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E-R diagrams

Represent logical structure simply, clearly
Rectangles: entity sets
Ellipses: attributes
Diamonds: relationship sets
Lines: linking elements
Double ellipse: multi-valued attributes
Dashed ellipse: derived attributes
Double lines: total participation

Figure: Entity-Relationship diagram
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Cardinality Representation

Figure: Many to one

Figure: One to many

Figure: One to one
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Attribute for relationship set

Figure: Attribute attached to a relationship set
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Possible attribute types

Figure: Composite, multi–valued, and derived attributes
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Specifying roles

Figure: Role indicators
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Total participation

Figure: Total participation of employee entity set

Database Design



Specifying cardinality limits

Use numerical range for precise specification of cardinality

min . . .max
1 . . . ∗ =⇒ double line (total participation)

Figure: Cardinality limits on the relationship set
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Attributes vs. Entity Sets

Can use either in situations

Figure: Phone as an attribute
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Phone as a new relation

Figure: Phone as an entity

If graduating to an entity:
remove phone from employee’s attribute list
Add entity set phone with attributes phone no & location
Add relationship set employee’s phone between the relations

Database Design
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Differences between the approaches

Multiple values
If attribute =⇒ only 1 phone no.

(unless multi–valued)

Main difference: entity set approach is more general
separate entity allows more information
Also, > 1 employee can share 1 phone
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Entity Sets vs. Relationship Sets

An object may be represented as either

Consider a project object

Easily modeled as an entity set

Figure: project modeled as an entity set
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Modeling project as a relationship set

May be modeled as:

Figure: project modeled as a relationship set

Works for strict 1-to-1 mapping
What happens for two employees working on same project?

Or for one project shared by two departments
Issues:

Duplication =⇒ storage wastage
Updates need to update twice; inconsistencies
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Solutions

Normalization theory

Model verbs as relationship sets; nouns as entity sets
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Specialization

Subgrouping of entity sets
Person→ Employee, Customer

Specialization: defining subgroupings

Figure: Specialization on Person set

Higher and lower entity sets
superclass, subclass

Attribute inheritance
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Another Specialization

Figure: Specialization on Employee set

Bottom-up approach: Generalization
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Aggregation

For modeling relationship between relationships

For e.g., manager related to all entity sets in a relationship
Quaternary: (manager, employee, project, department)

Figure: Tertiary & Quaternary Relationship Sets

Duplication of values
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An alternative

Figure: An alternative

But, a (employee, project, department) may not have a manager assigned
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An alternative

Figure: An alternative

But, a (employee, project, department) may not have a manager assigned
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Another alternative

Figure: Another alternative with manager as an attribute

Only if manager is a single value
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Aggregation

Aggregation: Relationships are treated as entities
working–in–project(employee, project, department)→ relationship set +
entity
manages→ relationship set

Figure: E–R diagram with aggregation
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Aggregation: Relationships are treated as entities
working–in–project(employee, project, department)→ relationship set +
entity
manages→ relationship set

Figure: E–R diagram with aggregationDatabase Design



Need for weak entity sets

Some sets have undefinable primary keys
Consider payment entity set, related to loan

payment(payment id, amount)

Figure: Payment entity set

Entity in payment are not unique
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Weak Entity Sets

Weak Entity Sets→ no primary keys

payment is existence dependent on loan, the identifying set

loan owns the weak set payment
Each loan entity related to a set of payment entities

payment id : discriminator
(loan id, payment id) : primary key for payment

Figure: E–R diagram with a weak entity set
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Gathering Data Requirements

Branches: located in a city
Customers: identified by customer id

name, street, city
accounts and loans
associated with a banker

Employees: idenitified by employee id
name, phone no., dependent name
employee id of the manager
start date

Savings and checking accounts
Related to ≥ 1 customer
Unique account number
balance, last date of access by each customer
savings→ interest rate; checking→ overdrafts recorded

Loan: associated with a branch
identified by unique loan id
payment: amount, date, id
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Initial Entity Sets

branch: (branch name, branch city, assets)

customer: (customer id, customer name, customer street, customer city)
. . . banker name ?
employee: employee id, employee name, phone no, salary,manager

multi–valued dependent name
base: start date, employment length

savings, account: both have account number, balance
savings: interest rate
checking: overdraft amount

loan: loan number, amount, original branch
loan payment: weak entity set

payment number, payment date, payment amount
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E–R Diagram for entity sets

Figure: E–R Diagram for entity sets
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Relationship sets

borrower: customer and loan; many–to–many
loan branch: loan and branch; many–to–one

replaces the attribute original branch of loan
loan payment: loan and payment; one–to–many

documents that loan payments are made
depositor: customer and account; many–to–many

indicates that a customer owns an account
with attribute access date

cust banker: customer and employee; many–to–one
the customer is advised by a bank employee
replaces attribute banker name of customer

works for: between employees; one–to–many
role indicators (manager,worker)
replaces manager attribute of employee
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E–R diagram with Relationship Set

Figure:
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Representation of Strong Entity Sets

Let E be entity set; descriptive attributes a1, a2, . . . , an

Represented by schema Es with n attributes
Each entity corresponds to tuple in Es

will discuss multi–valued and composite attributes later

primary key remains the same

E.g., entity set loan becomes a schema

loan = (loan number, amount)
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Representation of Weak Entity Sets

Let A be a weak entity set; attributes a1, a2, . . . , am

B be the owner strong entity set of A; primary key attributes b1, b2, . . . , bn

As ≡ a1, a2, . . . , am ∪ b1, b2, . . . , bn

primary key(As) ≡ primary key(B) ∪ discriminator(A)

Foreign key constraints for b1, b2, . . . , bn in As

payments = (loan number, payment number, payment date, payment amount)
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Representation of Relationship Sets

For relationship set R, let a1, a2, . . . , an be the primary keys of all entity sets

b1, b2, . . . , bm be the descriptive attributes of R
Form a new relation schema Rs with attributes

{a1, a2, . . . , an} ∪ {b1, b2, . . . , bm}

Primary key is the same as that for R:
many-to-many: primary key(E1) ∪ primary key(E2)
one-to-many: primary key(E2)
many-to-one: primary key(E1)
one-to-one: primary key(E1) or primary key(E2)

Create the necessary foreing key constraints
For e.g., borrower involves

customer with primary key customer id
loan with primary key loannumber

borrowers schema ≡ (customer id, loan number)

Many–many relationship⇒ both attributes are in primary key

Foreign key constraints for both attributes
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Redundancy of Some Relational Schemas

Consider loan payment relationship set

PK(loan) = loan number, PK(payment) = loan number, payment number
∴ loan payments will have attributes loan number, payment number
∴, duplication for loan number, payment number values

∴, loan payment is redundant
Usually the schema for a weak relationship set is redundant

not included in final relational DB design
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Combination of Schemas

Consider entity sets A, B; relationship set AB
will produce corresponding 3 schemas

As, ABs, Bs

If AB is many–to–one; A totally participates:
Schemas As and ABs can be combined
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Example of Schema combination

Consider:

Every account entity participates in account branch
Can combine account with account branch Schemas:

account = (account number, balance, branch number)
branch = (branch name, branch city, assets)

Primary key remains the same (account number)

Only one, the remaining (branch name), foreign key contraint
Why many–to–one?

One–to–one also (combine with A or B)
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Composite and Multi–Valued Attributes

Composite attribute is expanded into multiple attributes
original attribute is discarded

New relation is created for a multi–valued attribute
If M is multi–valued:

New relation R is created
Attributes

1 A: same as M
2 primary keys of M’s entity set (act as foreign key)

Primary key→ all attributes
Create foreign key via shared attribute
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