
Database Design

October 24, 2008

Database Design



Outline

Database Design



E-R diagrams

Represent logical structure simply, clearly
Rectangles: entity sets
Ellipses: attributes
Diamonds: relationship sets
Lines: linking elements
Double ellipse: multi-valued attributes
Dashed ellipse: derived attributes
Double lines: total participation

Figure: Entity-Relationship diagram

Database Design



Cardinality Representation

Figure: Many to one

Figure: One to many

Figure: One to one

Database Design



Attribute for relationship set

Figure: Attribute attached to a relationship set

Database Design



Possible attribute types

Figure: Composite, multi–valued, and derived attributes

Database Design



Specifying roles

Figure: Role indicators

Database Design



Total participation

Figure: Total participation of employee entity set

Database Design



Specifying cardinality limits

Use numerical range for precise specification of cardinality

min . . .max
1 . . . ∗ =⇒ double line (total participation)

Figure: Cardinality limits on the relationship set

Database Design



Outline

Database Design



Attributes vs. Entity Sets

Can use either in situations

Figure: Phone as an attribute

Database Design



Attributes vs. Entity Sets

Can use either in situations

Figure: Phone as an attribute

Database Design



Phone as a new relation

Figure: Phone as an entity

If graduating to an entity:
remove phone from employee’s attribute list
Add entity set phone with attributes phone no & location
Add relationship set employee’s phone between the relations

Database Design



Phone as a new relation

Figure: Phone as an entity

If graduating to an entity:
remove phone from employee’s attribute list
Add entity set phone with attributes phone no & location
Add relationship set employee’s phone between the relations

Database Design



Differences between the approaches

Multiple values
If attribute =⇒ only 1 phone no.

(unless multi–valued)

Main difference: entity set approach is more general
separate entity allows more information
Also, > 1 employee can share 1 phone

Database Design



Entity Sets vs. Relationship Sets

An object may be represented as either

Consider a project object

Easily modeled as an entity set

Figure: project modeled as an entity set

Database Design



Entity Sets vs. Relationship Sets

An object may be represented as either

Consider a project object

Easily modeled as an entity set

Figure: project modeled as an entity set

Database Design



Entity Sets vs. Relationship Sets

An object may be represented as either

Consider a project object

Easily modeled as an entity set

Figure: project modeled as an entity set

Database Design



Modeling project as a relationship set

May be modeled as:

Figure: project modeled as a relationship set

Works for strict 1-to-1 mapping
What happens for two employees working on same project?

Or for one project shared by two departments
Issues:

Duplication =⇒ storage wastage
Updates need to update twice; inconsistencies

Database Design



Modeling project as a relationship set

May be modeled as:

Figure: project modeled as a relationship set

Works for strict 1-to-1 mapping
What happens for two employees working on same project?

Or for one project shared by two departments

Issues:
Duplication =⇒ storage wastage
Updates need to update twice; inconsistencies

Database Design



Modeling project as a relationship set

May be modeled as:

Figure: project modeled as a relationship set

Works for strict 1-to-1 mapping
What happens for two employees working on same project?

Or for one project shared by two departments
Issues:

Duplication =⇒ storage wastage
Updates need to update twice; inconsistencies

Database Design



Solutions

Normalization theory

Model verbs as relationship sets; nouns as entity sets

Database Design



Outline

Database Design



Specialization

Subgrouping of entity sets
Person→ Employee, Customer

Specialization: defining subgroupings

Figure: Specialization on Person set

Higher and lower entity sets
superclass, subclass

Attribute inheritance

Database Design



Specialization

Subgrouping of entity sets
Person→ Employee, Customer

Specialization: defining subgroupings

Figure: Specialization on Person set

Higher and lower entity sets
superclass, subclass

Attribute inheritance

Database Design



Another Specialization

Figure: Specialization on Employee set

Bottom-up approach: Generalization

Database Design



Aggregation

For modeling relationship between relationships

For e.g., manager related to all entity sets in a relationship
Quaternary: (manager, employee, project, department)

Figure: Tertiary & Quaternary Relationship Sets

Duplication of values

Database Design



Aggregation

For modeling relationship between relationships
For e.g., manager related to all entity sets in a relationship

Quaternary: (manager, employee, project, department)

Figure: Tertiary & Quaternary Relationship Sets

Duplication of values

Database Design



An alternative

Figure: An alternative

But, a (employee, project, department) may not have a manager assigned

Database Design



An alternative

Figure: An alternative

But, a (employee, project, department) may not have a manager assigned

Database Design



Another alternative

Figure: Another alternative with manager as an attribute

Only if manager is a single value

Database Design



Aggregation

Aggregation: Relationships are treated as entities
working–in–project(employee, project, department)→ relationship set +
entity
manages→ relationship set

Figure: E–R diagram with aggregation

Database Design



Aggregation

Aggregation: Relationships are treated as entities
working–in–project(employee, project, department)→ relationship set +
entity
manages→ relationship set

Figure: E–R diagram with aggregationDatabase Design



Need for weak entity sets

Some sets have undefinable primary keys
Consider payment entity set, related to loan

payment(payment id, amount)

Figure: Payment entity set

Entity in payment are not unique

Database Design



Need for weak entity sets

Some sets have undefinable primary keys
Consider payment entity set, related to loan

payment(payment id, amount)

Figure: Payment entity set

Entity in payment are not unique

Database Design



Need for weak entity sets

Some sets have undefinable primary keys
Consider payment entity set, related to loan

payment(payment id, amount)

Figure: Payment entity set

Entity in payment are not unique

Database Design



Weak Entity Sets

Weak Entity Sets→ no primary keys

payment is existence dependent on loan, the identifying set

loan owns the weak set payment
Each loan entity related to a set of payment entities

payment id : discriminator
(loan id, payment id) : primary key for payment

Figure: E–R diagram with a weak entity set

Database Design



Weak Entity Sets

Weak Entity Sets→ no primary keys

payment is existence dependent on loan, the identifying set

loan owns the weak set payment
Each loan entity related to a set of payment entities

payment id : discriminator
(loan id, payment id) : primary key for payment

Figure: E–R diagram with a weak entity set

Database Design



Outline

Database Design



Gathering Data Requirements

Branches: located in a city
Customers: identified by customer id

name, street, city
accounts and loans
associated with a banker

Employees: idenitified by employee id
name, phone no., dependent name
employee id of the manager
start date

Savings and checking accounts
Related to ≥ 1 customer
Unique account number
balance, last date of access by each customer
savings→ interest rate; checking→ overdrafts recorded

Loan: associated with a branch
identified by unique loan id
payment: amount, date, id

Database Design



Initial Entity Sets

branch: (branch name, branch city, assets)

customer: (customer id, customer name, customer street, customer city)
. . . banker name ?
employee: employee id, employee name, phone no, salary,manager

multi–valued dependent name
base: start date, employment length

savings, account: both have account number, balance
savings: interest rate
checking: overdraft amount

loan: loan number, amount, original branch
loan payment: weak entity set

payment number, payment date, payment amount

Database Design



E–R Diagram for entity sets

Figure: E–R Diagram for entity sets

Database Design



Relationship sets

borrower: customer and loan; many–to–many
loan branch: loan and branch; many–to–one

replaces the attribute original branch of loan
loan payment: loan and payment; one–to–many

documents that loan payments are made
depositor: customer and account; many–to–many

indicates that a customer owns an account
with attribute access date

cust banker: customer and employee; many–to–one
the customer is advised by a bank employee
replaces attribute banker name of customer

works for: between employees; one–to–many
role indicators (manager,worker)
replaces manager attribute of employee

Database Design



E–R diagram with Relationship Set

Figure:

Database Design



Outline

Database Design



Representation of Strong Entity Sets

Let E be entity set; descriptive attributes a1, a2, . . . , an

Represented by schema Es with n attributes
Each entity corresponds to tuple in Es

will discuss multi–valued and composite attributes later

primary key remains the same

E.g., entity set loan becomes a schema

loan = (loan number, amount)

Database Design



Representation of Weak Entity Sets

Let A be a weak entity set; attributes a1, a2, . . . , am

B be the owner strong entity set of A; primary key attributes b1, b2, . . . , bn

As ≡ a1, a2, . . . , am ∪ b1, b2, . . . , bn

primary key(As) ≡ primary key(B) ∪ discriminator(A)

Foreign key constraints for b1, b2, . . . , bn in As

payments = (loan number, payment number, payment date, payment amount)

Database Design



Representation of Relationship Sets

For relationship set R, let a1, a2, . . . , an be the primary keys of all entity sets

b1, b2, . . . , bm be the descriptive attributes of R
Form a new relation schema Rs with attributes

{a1, a2, . . . , an} ∪ {b1, b2, . . . , bm}

Primary key is the same as that for R:
many-to-many: primary key(E1) ∪ primary key(E2)
one-to-many: primary key(E2)
many-to-one: primary key(E1)
one-to-one: primary key(E1) or primary key(E2)

Create the necessary foreing key constraints
For e.g., borrower involves

customer with primary key customer id
loan with primary key loannumber

borrowers schema ≡ (customer id, loan number)

Many–many relationship⇒ both attributes are in primary key

Foreign key constraints for both attributes

Database Design



Redundancy of Some Relational Schemas

Consider loan payment relationship set

PK(loan) = loan number, PK(payment) = loan number, payment number
∴ loan payments will have attributes loan number, payment number
∴, duplication for loan number, payment number values

∴, loan payment is redundant
Usually the schema for a weak relationship set is redundant

not included in final relational DB design

Database Design



Combination of Schemas

Consider entity sets A, B; relationship set AB
will produce corresponding 3 schemas

As, ABs, Bs

If AB is many–to–one; A totally participates:
Schemas As and ABs can be combined

Database Design



Example of Schema combination

Consider:

Every account entity participates in account branch
Can combine account with account branch Schemas:

account = (account number, balance, branch number)
branch = (branch name, branch city, assets)

Primary key remains the same (account number)

Only one, the remaining (branch name), foreign key contraint
Why many–to–one?

One–to–one also (combine with A or B)

Database Design



Example of Schema combination

Consider:

Every account entity participates in account branch
Can combine account with account branch Schemas:

account = (account number, balance, branch number)
branch = (branch name, branch city, assets)

Primary key remains the same (account number)

Only one, the remaining (branch name), foreign key contraint
Why many–to–one?

One–to–one also (combine with A or B)

Database Design



Example of Schema combination

Consider:

Every account entity participates in account branch
Can combine account with account branch Schemas:

account = (account number, balance, branch number)
branch = (branch name, branch city, assets)

Primary key remains the same (account number)

Only one, the remaining (branch name), foreign key contraint
Why many–to–one?

One–to–one also (combine with A or B)

Database Design



Composite and Multi–Valued Attributes

Composite attribute is expanded into multiple attributes
original attribute is discarded

New relation is created for a multi–valued attribute
If M is multi–valued:

New relation R is created
Attributes

1 A: same as M
2 primary keys of M’s entity set (act as foreign key)

Primary key→ all attributes
Create foreign key via shared attribute

Database Design


