Theta-join

• Combines select (with a predicate) and Cartesian-product

$$r \boxtimes_{\theta} s = \sigma_{\theta}(r \times s)$$

Division Operation

- ÷, when query includes the phrase "for all"
 - Customers who have an account at all the branches in Brooklyn

branch_name	branch_city	
Brighton	Brooklyn	
Downtown	Brooklyn	
Redwood	Rye	
Hill	Palo Alto	

Branch

customer_name	account_number	
Hayes	A-102	
Johnson	A-101	
Johnson	A-201	
Jones	A-217	

Depositor

account_number	branch_name	balance
A-101	Downtown	500
A-102	Perryridge	400
A-201	Brighton	900
A-215	Mianus	700
A-217	Brighton	750
A-222	Redwood	700
A-305	Round Hill	350

Account

Formal definition of Division

Expansion of Division operation

$$r \div s = \pi_{R-s}(r) - \pi_{R-s}((\pi_{R-s}(r) \times s) - \pi_{R-s,s}(r))$$

Assignment Operation

Assign a relation expression to a variable

```
temp1 \leftarrow \pi_{R-S}(r)

temp2 \leftarrow \pi_{R-S}((temp1 \times s) - \pi_{R-S,S}(r))

result = temp1 - temp2
```

- Helps in writing sequential programs
- Difference from rename operation?