• Set-Intersection operation

Customers who have both a loan account and a borrower account

πcustomer_name(borrower) ∩ πcustomer_name(depositor)

•
$$r \cap s = r - (r - s)$$

- Simplifies Cartesian product
 - used much more
- Often: Cartesian-product then select
 - Customer with both a loan and an account
 - $\sigma_{loan.name} = account.name(loan x account)$
- Natural Join: Cartesian product => select with equality of common attributes => removes duplicates

Examples of natural join

Customer_name	Customer_street	Customer_city	customer_name	account_number	account_number	branch_name	balance
Adams	Spring	Chicago	Hayes	A-102	A-101	Downtown	500
Brooks	Senator	Brooklyn	Johnson	A-101	A-102 A-201	Perryridge Brighton	400 900
Curry	Elm	Harrison	Johnson	A-201	A-215	Mianus	700
Glenn	New Era	Stamford	Jones	A-217	A-217 A-222	Brighton Redwood	750 700
Customer			Dopositor		A-305	Round Hill	350

Customer

Depositor

Account

customer_name	account_number	
Adams	L-16	
Curry	L-93	Borrower
Hayes	L-15	
Jackson	L-14	

- Names of all branches with customers who have an account and who live in Harrison
- Customers who have *both* a loan and an account number
- $r \boxtimes s = r \times s$, if ... ?

- Schemas R and S (lists of attributes)
- $R \cap S$, $R \cup S$, R S, S R
- If r(R) and s(S)

$$r \boxtimes s = \pi_{RUS} (\sigma_{r,A1=s,A1} \wedge r,A1=s,A1 \wedge \wedge r,An=s,An r x s)$$

where, $R \cap S = \{A_1, \dots, A_n\}$