Cartesian-Product operation

- Combine information, $r_1 \times r_2$
- Remember: a relation is a subset of a Cartesian product
- Naming scheme to differentiate attributes: relation.attribute
 - only for non-distinct attributes
- What tuples appear in $r_1 \times r_2$?
- tuples in $r_1 \times r_2$: all possible combinations of tuples in r_1 and r_2
- if r_1 has n_1 , and r_2 has n_2 , then $r_1 \times r_2$ has $n_{1*}n_2$ tuples

Cartesian-Product

- For relations $r_1(R_1)$, $r_2(R_2)$:
 - $r_1 x r_2$ concatenation of R_1 and R_2
- For tuple $t \in r_1 \times r_2$, then:
 - there is $t_1 \in r_1$ and $t_2 \in r_2$ such that:
 - $t[R_1] = t_1[R_1]$ and $t[R_2] = t_2[R_2]$

Rename Operation

- Name and refer to results of relational-algebra operations
- Allows us to refer to a relation by more than one name.
- Example:

 $\rho_x(E)$

returns the expression E under the name X

• If a relational-algebra expression E has arity n, then

returns the result of expression E under the name X, and with the

attributes renamed to A_1 , A_2 , ..., A_n .

Another rename example

Customers living in the same street and city as Green

Customer_name	Customer_street	Customer_city
Adams	Spring	Chicago
Brooks	Senator	Brooklyn
Curry	Elm	Harrison
Glenn	New Era	Stamford
Green	Elm	Harrison
Hayes	Elm	Harrison

Find out Green's street and city:

```
\pi_{customer_street}, customer_city(\sigma_{customer_name="Green"}) ..... A
```

Rename it: (why?)

```
\rho_{green_addr(street, city)}(A))
```

```
Take cross-product with original relation

Customer X B ..... C

Select needed values and project

πcustomer.customer_name(σcustomer.customer_street=green_add.street ^
```

customer.customer_city=green_add.city (C))

..... B

• Set-Intersection operation

Customers who have both a loan account and a borrower account

 $\pi_{customer_name}(borrower) \cap \pi_{customer_name}(depositor)$

•
$$r \cap s = r - (r - s)$$

