
Relation Schema

• Given domains D1, D2, …. Dn a relation r is a subset of

 D1 x D2 x … x Dn (cartesian product)

Thus, a relation is a set of tuples (a1, a2, …, an)

 where each ai ! Di

• Schema of a relation consists of

• attribute definitions

• name

• type/domain

• integrity constraints

Tuple Row

Relation Table

Math General

Schema and Relations

Account_schema = (account_number, branch_name, balance)

Schema

account(Account_schema)

Relation from a schema

Relation instance

Relation Instance

• The current values (relation instance) of a relation are specified by a table

• An element t of r is a tuple, represented by a row in a table

• Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

Jones
Smith
Curry

Lindsay

customer_name

Main
North
North
Park

customer_street

Harrison
Rye
Rye

Pittsfield

customer_city

Customer

attributes
(or columns)

tuples
(or rows)

t t[customer_name] = t[1] = Jones⇒

Database

• A database consists of multiple relations

• Information about an enterprise is broken up into parts, with each relation storing

one part of the information

• E.g.

! ! account : information about accounts

 depositor : which customer owns which account

 customer : information about customers

The customer Relation

Customer_schema = (customer_name, customer_street, customer_city)

The depositor Relation

Depositor_schema = (customer_name, account_number)

Why Split Information Across Relations?

• Storing all information as a single relation such as

 Bank_schema = (account_number, balance, customer_name, ..)

• Results in

• repetition of information

• e.g.,if two customers own an account (What gets repeated?)

• the need for null values

• e.g., to represent a customer without an account

• Normalization theory (Chapter 7) deals with how to design relational schemas

Keys

• Reflect constraints in the real-world enterprise

• Let K " R

• K is a superkey of R if values for K are sufficient to identify a unique tuple of each

possible relation r(R)

• by “possible r ” we mean a relation r that could exist in the enterprise we are modeling.

• Example: {customer_name, customer_street} and
 {customer_name}
are both superkeys of Customer, if no two customers can possibly have the same name

• In real life, an attribute such as customer_id would be used instead of customer_name to uniquely
identify customers, but we omit it to keep our examples small, and instead assume customer names are
unique.

Keys (Cont.)

• K is a candidate key if K is minimal: no subset of K is a superkey

Example: {customer_name} is a candidate key for Customer

• Primary key: a candidate key chosen as the principal means of identifying tuples

within a relation

• Should choose an attribute whose value never, or very rarely, changes.

• E.g. email address is unique, but may change

• Others?

• Generate your own

Keys and schema

R: relational schema

K: superkey of R ⇒ restriction on relations r(R)

t1, t2 ! r and t1 ! t2 ⇒ t1[K] ! t2[K]

Foreign Keys

• A relation schema may have an attribute that corresponds to the primary key of

another relation. The attribute is called a foreign key.

• E.g. customer_name and account_number attributes of depositor are foreign keys
to customer and account respectively.

• Only values occurring in the primary key attribute of the referenced relation may occur in
the foreign key attribute of the referencing relation.

Referencing relation

Referenced relation

Schema Diagram

Primary key

Query Languages

• Language in which user requests information from the database.

• Categories of languages

• Procedural

• Non-procedural, or declarative

• “Pure” languages:

• Relational algebra

• Tuple relational calculus

• Domain relational calculus

• Pure languages form underlying basis of query languages that people use.

Relational Algebra

• Similar to regular algebra (3*x + 2*y)

• Relations instead of numbers

• Why study?

• foundation of low-level DBMS operations

• in order to understand query execution

• Build sophisticated SQL queries

• More procedural than SQL (which is declarative)

Set Theory

• A set: unordered collection of distinct objects

• Elements of a set

• Subset, proper subset, superset

• Union

• Intersection

• set difference

• Cartesian product (set of ordered pairs)

{0, 20, 12, 60}

{Canada, U.S.A.}

Relational Operators

• Six basic operators

• select: !

• project: "

• union: #

• set difference: –

• Cartesian product: x

• rename: "

Select Operation – Example

loan_number branch_name amount

L-11 Round Hill 900

L-14 Downtown 1500

L-15 Perryridge 1500

L-16 Perryridge 1300

L-17 Downtown 1000

L-23 Redwood 2000

L-93 Mianus 500

!branch_name=”Perryridge”(loan)

All tuples in relation loan where branch is
“Perryridge”

Predicate

All tuples with amount lent is more than $1200

!amount > 1200(loan)

loan_number branch_name amount

L-15 Perryridge 1500

L-16 Perryridge 1300

Select Operation

Comparators: =, !, <, ", >, #

Connectives: and ($), or (%), not (¬)

loan_number branch_name amount

L-11 Round Hill 900

L-14 Downtown 1500

L-15 Perryridge 1500

L-16 Perryridge 1300

L-17 Downtown 1000

L-23 Redwood 2000

L-93 Mianus 500

!branch_name=“Perryridge” $ amount > 1350(loan)

loan_number branch_name amount

L-15 Perryridge 1500

Project Operation – Example

List only part of a relation

&loan_number, amount(loan)

loan_number branch_name amount

L-11 Round Hill 900

L-14 Downtown 1500

L-15 Perryridge 1500

L-16 Perryridge 1300

L-17 Downtown 1000

L-23 Redwood 2000

L-93 Mianus 500

loan_number amount

L-11 900

L-14 1500

… …

Composition of operations

Result of a relational operation is a relation

&loan_number(!branch_name=”Perryridge”(loan))

loan_number branch_name amount

L-11 Round Hill 900

L-14 Downtown 1500

L-15 Perryridge 1500

L-16 Perryridge 1300

L-17 Downtown 1000

L-23 Redwood 2000

L-93 Mianus 500

loan_number

L-15

L-16

Union operation

• Combine the result of two operations

Query: customers with an account or a loan (or both)

&customer_name(depositor) U &customer_name(borrower)

customer_name account_number

Hayes A-102

Johnson A-101

Johnson A-201

Jones A-217

Lindsay A-222

Smith A-215

Turner A-305

customer_name account_number

Adams L-16

Curry L-93

Hayes L-15

Jackson L-14

Jones L-17

Smith L-11

Smith L-23

Williams L-17

Depositor
relation

Borrower
relation

customer_name

Adams

Curry

Hayes

Jackson

Jones

Smith

Williams

Lindsay

Johnson

Turner

Rules for Union compatibility

• For (r U s) to work

• r and s should have same arity (same number of attributes)

• corresponding attributes should have same domain

Set-difference operations

• Find tuples in one that are not present in another

• Same rules for compatibility apply as in Union

&customer_name(depositor) – &customer_name(borrower)

customer_name

Lindsay

Johnson

Turner

Cartesian-Product operation

• Combine information, r1 x r2

• Remember: a relation is a subset of a Cartesian product

• Naming scheme to differentiate attributes: relation.attribute

• only for non-distinct attributes

• What tuples appear in r1 x r2 ?

• tuples in r1 x r2 : all possible combinations of tuples in r1 and r2

• if r1 has n1, and r2 has n2, then r1 x r2 has n1*n2 tuples

Cartesian-Product

• For relations r1(R1), r2(R2):

• r1 x r1 concatenation of R1 and R2

• For tuple t ! r1 x r1,, then:

• t[R1] = t1[R1] and t[R2] = t2[R2]

