Relation Schema

e Given domains D1, Do, Dn a relation r is a subset of
D1 X D2 X ... X Dn (cartesian product)

Thus, a relation is a set of tuples (al, a2, ..., an)
Tuple — Row

Relation — Table
Math General

where each ai € Di

e Schema of a relation consists of

e attribute definitions
® Nname

e type/domain

* integrity constraints

Schema and Relations

Account_schema = (account_number, branch_name, balance)

Schema

account(Account_schema)

Relation from a schema

account_number | branch_name | balance

A-101 Downtown 500
A-102 Perryridge 400
A-201 Brighton 900
A-215 Mianus 700
A-217 Brighton 750
A-222 Redwood 700
A-305 Round Hill 350

Relation iInstance

Relation Instance

e The current values (relation instance) of a relation are specified by a table
e An element t of r is a tuple, represented by a row in a table
e Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
attributes
/(or columns)

customer_name | customer_street | customer_city

Jones Main Harrison

Smith North Rye = or oo
Curry North Rye
Lindsay Park Pittsfield

Customer

= t[customer_name] = t[1] = Jones

Database

e A database consists of multiple relations

e Information about an enterprise is broken up into parts, with each relation storing
one part of the information

e E.0.

account : information about accounts
depositor : which customer owns which account
customer : information about customers

Relation

The customer

customer_name | customer_stieet | customer—_city

Customer_schema

Adams
Brooks
Curry
Glenn
Green
Hayes
Johnson
Jones
Lindsay
Smith
Turner
Williams

= (customer_name, customer_street, customer_city)

Spring
Senator
North
Sand Hill
Walnut
Main
Alma
Main
Park
North
Putnam
Nassau

Pittsfield
Brooklyn
Rye
Woodside
Stamford
Harrison
Palo Alto
Harrison
Pittsfield
Rye
Stamford
Princeton

The depositor Relation

customer—_name | account_number
Hayes A-102
Johnson A-101
Johnson A-201
Jones A-217
Lindsay A-222
Smith A-215
Turner A-305

Depositor_schema = (customer_name, account_number)

Why Split Information Across Relations”

e Storing all information as a single relation such as

Bank_schema = (account_number, balance, customer_name,

¢ Results in

e repetition of information

e e.g.,if two customers own an account (What gets repeated?)

e the need for null values

® e.g., to represent a customer without an account

e Normalization theory (Chapter 7) deals with how to design relational schemas

Keys

e Reflect constraints in the real-world enterprise
e letKCR

e K is a superkey of R if values for K are sufficient to identify a unique tuple of each
possible relation r(R)

e by “possible r ” we mean a relation r that could exist in the enterprise we are modeling.

e Example: {customer_name, customer_street} and
customer_name} |
are both superkeys of Customer, if no two customers can possibly have the same name

* In real life, an attribute such as customer_id would be used instead of customer_name to uniquely
identify customers, but we omit it to keep our examples small, and instead assume customer names are

unique.

Keys (Cont.)

e K is a candidate key if K is minimal: no subset of K is a superkey
Example: {customer_name} is a candidate key for Customer

e Primary key: a candidate key chosen as the principal means of identifying tuples
within a relation

Should choose an attribute whose value never, or very rarely, changes.
E.g. email address is unique, but may change

Others?

Generate your own

Keys and schema

R: relational schema

K: superkey of R = restriction on relations r(R)

t1, t2 e rand t1 = t2 = t1[K] = t2[K]

Foreign Keys

e A relation schema may have an attribute that corresponds to the primary key of
another relation. The attribute is called a foreign key.

e E.g. customer_name and account_number attributes of depositor are foreign keys
to customer and account respectively.

* Only values occurring in the primary key attribute of the referenced relation may occur in
the foreign key attribute of the referencing relation.

Customer_nanie

customer—steet | customer—city

Adams
Brooks
Cu rry

N

Spring Pittsfield
Senator Brooklyn
North Rye

account_number| branch_name| balance

A-101 Downtown 500
A-102 Perryridge 400
A-201 Brighton 900

customer—_name

.
.
.
.
.
.
account_number |

Hayes
Johnson
Johnson
Jones
Lindsay
Smith
Turner

A-102
A-101
A-201
A-217
A-222
A-215
A-305

Referenced relation

-=-==% Referencing relation

Schema Diagram

branch account depositor customer

branch—name account_number customer—name customer—name
branch_city branch_name account_number customer—_street
) balance customer—city

assets

loan borrower

loan_number customer—name
branch_name loan_number
amount

Primary key

Query Languages

e [anguage in which user requests information from the database.

e Categories of languages

e Procedural
e Non-procedural, or declarative

e “Pure” languages:

e Relational algebra
e Tuple relational calculus

e Domain relational calculus

e Pure languages form underlying basis of query languages that people use.

Relational Algebra

e Similar to regular algebra (3*x + 2*y)

e Relations instead of numbers

e \Why study?

e foundation of low-level DBMS operations
¢ in order to understand query execution
e Build sophisticated SQL queries

e More procedural than SQL (which is declarative)

Set Theory

e A set: unordered collection of distinct objects {0, 20, 12, 60}
e Elements of a set iCanada, U.5.A.}
e Subset, proper subset, superset

e Union

* |ntersection

e set difference

e Cartesian product (set of ordered pairs)

Relational Operators

e Six basic operators

select: o

project: []

union: u

set difference: -
Cartesian product: x

rename: p

Select Operation — Example

All tuples In relation 1oan where branch is
“Perryridge”

loan_number | branch name

L-11 Round Hill

O'branch_name=”Perryridge”(lOan) L-14 Downtown

Predicate L-15 Perryridge
l L-16 Perryridge

loan_ number | branch name | amount | -17 Downtown

L -15 Perryridge 1500 | -23 Redwood
L-16 Perryridge 1300

| -93 Mianus

All tuples with amount lent is more than $1200
Oamount > 1200 Loan)

Select Operation

Comparators: =, =, <, <, >, 2

Connectives: and (A), or (v), not (=)

Obranch_name=“Perryridge” A amount > 1350(Lloan)

|

loan_number | branch_name | amount

loan_number | branch_name | amount L-11 Round Hill 900
L-14 Downtown 1500

L-15 Perryridge 1500
L-16 Perryridge 1300
L-17 Downtown 1000
L-23 Redwood 2000
-93 Mianus 500

L-15 Perryridge 1500

Project Operation —

—xample

List only part of a relation

TMloan_number, amount(lOan)

!

loan_number

amount

L-11

900

L-14

1500

loan_number

branch_name

L-11

Round Hill

L-14

Downtown

L-15

Perryridge

L-16

Perryridge

17

Downtown

L-23

Redwood

L-93

Mianus

Composition of operations

Result of a relational operation is a relation

T[loan_number(O'branch_name=”Perryridge”(100n))

loan_number
L -15
| -16

loan_number

branch_name

L-11

Round Hill

L-14

Downtown

L-15

Perryridge

L-16

Perryridge

L-17

Downtown

L-23

Redwood

L-93

Mianus

Union operation

e Combine the result of two operations

Depositor
relation

Query: customers with an account or a loan (or both)

customer_name

account_number

customer_name

account_number

Hayes

A-102

Adams

L-16

Johnson

A-101

Curry

L-93

Johnson

A-201

Hayes

L-15

Jones

A-217

Jackson

L-14

Lindsay

A-222

Jones

L-17

Smith

A-215

Smith

L-11

Turner

A-305

Smith

L-23

Williams

17

T[customer_name(depOS'i. 'tOI") U T[customer_name(bOl" rowe I")

Borrower
relation

customer_name

Adams

Curry

Hayes

Jackson

Jones

Smith

Williams

Lindsay

Johnson

Turner

Rules for Union compatibility

e For (r u s) to work

e and s should have same arity (same number of attributes)

e corresponding attributes should have same domain

Set-difference operations

e Find tuples in one that are not present in another

ncustomer'_name(depOS'i. 'tOI") — T[customer_name(bOl" rFowe I")

e Same rules for compatibility apply as in Union

customer_name

Lindsay

Johnson

Turner

Cartesian-Product operation

e Combine information, r1 x r;
e Remember: a relation is a subset of a Cartesian product

e Naming scheme to differentiate attributes: relation.attribute

e only for non-distinct attributes

e What tuples appearinri x rz ?

e tuplesinris x rz : all possible combinations of tuples in r1 and r;

e if r1 has n1, and rz has nz, then r1 X rz has ni*nz tuples

Cartesian-

e For relations ri(R4), r2(R2):

® r1 X r1 concatenation of R1and Ro»

e Fortuplet e r1 xry,, then:

e t[R1] = t1[R1] and t[Rz] = t2[Rz]

