
Chapter 2: Relational Model

Chapter 2: Relational Model

• Structure of Relational Databases

• Fundamental Relational-Algebra Operations

• Additional Relational-Algebra Operations

• Extended Relational-Algebra Operations

• Null Values

• Modification of the Database

Example of a Relation

Attribute Types

• Each attribute of a relation has a name

• Set of allowed values: domain of the attribute

• Values (normally) required to be atomic;

• indivisible

• e.g., Downtown, but not {Downtown, Mianus}

• Domain is said to be atomic if all its members are atomic

• Special value null: member of every domain

• unknown or non-existent value

• The null value causes complications in the definition of many

operations

• We shall ignore the effect of null values in our main presentation
and consider their effect later

4

Domains and Tuples

• Domain D1: set of all account numbers, similarly D2, D3

• Every row: tuple of 3 values (v1, v2, v3)

• Table account ! all such tuples

Relation Schema

• Given domains D1, D2, …. Dn a relation r is a subset of

 D1 x D2 x … x Dn (cartesian product)

Thus, a relation is a set of tuples (a1, a2, …, an)

 where each ai ! Di

• Schema of a relation consists of

• attribute definitions

• name

• type/domain

• integrity constraints

Tuple Row

Relation Table

Math General

Schema and Relations

Account_schema = (account_number, branch_name, balance)

Schema

account(Account_schema)

Relation from a schema

Relation instance

Relation Instance

• The current values (relation instance) of a relation are specified by a table

• An element t of r is a tuple, represented by a row in a table

• Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

Jones
Smith
Curry

Lindsay

customer_name

Main
North
North
Park

customer_street

Harrison
Rye
Rye

Pittsfield

customer_city

Customer

attributes
(or columns)

tuples
(or rows)

t t[customer_name] = t[1] = Jones⇒

Database

• A database consists of multiple relations

• Information about an enterprise is broken up into parts, with each relation storing

one part of the information

• E.g.

! ! account : information about accounts

 depositor : which customer owns which account

 customer : information about customers

The customer Relation

Customer_schema = (customer_name, customer_street, customer_city)

The depositor Relation

Depositor_schema = (customer_name, account_number)

Why Split Information Across Relations?

• Storing all information as a single relation such as

 Bank_schema = (account_number, balance, customer_name, ..)

• Results in

• repetition of information

• e.g.,if two customers own an account (What gets repeated?)

• the need for null values

• e.g., to represent a customer without an account

• Normalization theory (Chapter 7) deals with how to design relational schemas

