
Database Management Systems (CPTR 312)

Preliminaries

• Me: Raheel Ahmad

• Ph.D., Southern Illinois University

• M.S., University of Southern Mississippi

• B.S., Zakir Hussain College, India

• Contact: Science 116, rahmad@manchester.edu, 982-5314

• Tues: 9:00 am - 12:00 am, Thurs: 10:00 am - 12:00 am

• Email me with subject starting with CPTR312

• http://users.manchester.edu/Facstaff/RAhmad/classes/312/index.htm

• Also, Angel’s course webpage has a link to above

mailto:rahmad@manchester.edu
mailto:rahmad@manchester.edu
http://users.manchester.edu/Facstaff/RAhmad/index.html
http://users.manchester.edu/Facstaff/RAhmad/index.html

Preliminaries

• Course

• Science 142, MWThF: 9 – 9:50 am

• Databases:

• Crucial

• Insightful

• Challenging

• Discuss problems early, often

• Assignments, quizes, tests

• Slides will be available online

• Keep up to date with the deadlines and due dates

Introduction to Databases

Chapter 1: Introduction

• Purpose of Database Systems

• View of Data

• Database Languages

• Relational Databases

• Database Design

• Object-based and semistructured databases

• Data Storage and Querying

• Transaction Management

• Database Architecture

• Database Users and Administrators

• Overall Structure

• History of Database Systems

Database Management System (DBMS)

• DBMS contains information for a community of users

• Collection of interrelated data

• Set of programs to access the data

• An environment that is both convenient and efficient to use

• Database Applications:

• Banking: all transactions

• Airlines: reservations, schedules

• Universities: registration, grades

• Online retailers: order tracking, customized recommendations

• Manufacturing: production, inventory, orders, supply chain

• Human resources: employee records, salaries, tax deductions

• Databases touch all aspects of our lives; most pervasive software

History

• In the early days, database applications were built directly on top of file systems

• Drawbacks of using file systems to store data:

• Data redundancy and inconsistency

• Multiple file formats, duplication of information in different files

• Difficulty in accessing data

• Need to write a new program to carry out each new task

• Data isolation — multiple files and formats

• Integrity problems

• Integrity constraints (e.g. account balance > 0) become “buried” in program code rather than being
stated explicitly

• Hard to add new constraints or change existing ones

History

• Drawbacks of using file systems (cont.)

• Atomicity of updates

• Failures may leave database in an inconsistent state with partial updates carried out

• Example: Transfer of funds from one account to another should either complete or not happen at all

• Concurrent access by multiple users

• Concurrent access needed for performance

• Uncontrolled concurrent accesses can lead to inconsistencies

• Example: Two people reading a balance and updating it at the same time

• Security problems

• Hard to provide user access to some, but not all, data

• Database systems offer solutions to all the above problems

Levels of Abstraction

• Physical level: describes how a record is stored.

• data structures used; byte level strorage

• Logical level: describes the data stored in database, and the relationships among
the data.

• lowest level at which programmers and admin interact with database

	 type customer = record

 customer_id : string;

 customer_name : string;

 customer_street : string;

 customer_city : integer;

 end;

• View level: application programs hide details of data types. Views can also hide
information (such as an employee’s salary) for security purposes.

View of Data

An architecture for a database system

Schemas and Instances
• Similar to types and variables in programming languages

• Schema – the logical structure of the database (at every level) ; rarely changes

• E.g.: DB consists of information for set of customers, accounts, & their relationships

• Analogous to type information of a variable in a program

• Physical schema: database design at the physical level

• Logical schema: database design at the logical level; most important

• View schemas (subschemas)

• Instance – the actual content of the database at a particular point in time

• Analogous to the value of a variable

• Physical Data Independence – the ability to modify the physical schema without
changing the logical schema

• Applications depend on the logical schema

• interfaces between various levels should be well defined so that changes in some parts
do not seriously influence others.

Data Models
• A collection of conceptual tools for describing

• Data

• Data relationships

• Data semantics

• Data constraints

• Relational model

• tables; most widely used

• Entity-Relationship data model (mainly for database design)

• Object-based data models (Object-oriented and Object-relational)

• Semi-structured data model (XML)

• Other older models:

• Network model

• Hierarchical model

Data Manipulation Language (DML)

• Language for accessing and manipulating the data organized by the appropriate
data model

• Retrieval, insertion, deletion, modification

• Query: statement in DML requesting information

• DML also known as query language (technically incorrect)

• SQL is the most widely used query language

• Two classes of languages

• Procedural – user specifies what data is required and how to get those data

• Declarative (nonprocedural) – user specifies what data is required without specifying
how to get those data

• Abstraction: DML => physical level algorithms

• ease of use

Data Definition Language (DDL)

• For defining the database schema

• Example:
 create table account (
 account-number char(10),
 balance integer)

• Integrity constraints

• Domain constraints (integer, character, date)

• Referential integrity (referenced values across relations)

• Assertions (always valid condition)

• “every user with loan must have >$1000 balance”

• Authorization (read, insert, modify, delete)

• DDL compiler generates output: a set of tables stored in a data dictionary

• Data dictionary (table) contains metadata (i.e., data about data)

• Database schema

• DD consuted before reading/modifying data

Relational Model

Uses tables for data & relations between data
Usually employs SQL

A Sample Relational Database
Attributes

A table: multiple columns
A column: unique name

Records

Relational Model

• Bad schema

• Tables may be stored in files

• Relational model hides such low-level implementation details

Duplication

SQL

• SQL: widely used non-procedural language

• Input: set of tables + Constraints -------> Output: 1 table

SQL Query Example I

 select
customer.customer_name

 from
 customer

 where
customer.customer_id = ‘192-83-7465’

Find the name of the customer with customer-id 192-83-7465:

customer_name

Johnson

constraints

input

output

SQL Query Example II

Find all customers living in Harrison

customer_name

Hayes

Jones

 select
 customer.customer_name

 from
 customer

 where
 customer.customer_city = ‘Harrison’

SQL Query Example III

Find the balances of all accounts held by the customer with customer-id 192-83-7465

account_number balance

A-101 500

A-201 900

select
account. account_number, account. balance

 from
 depositor , account

 where
 depositor.customer_id = ‘192-83-7465’ and

 depositor.account_number = account.account_number

SQL DDL

• Provides a rich DDL

• creates the account table

• updates data dictionary

• Application programs

• written in host language: C++, Java

• embeds SQL queries to access data

• Language provides API to send DDL/DML to DB

• ODBC, JDBC

create table account
(account_number char(10),

balance integer)

Database Design

• The process of designing the structure of database (schema)

• everything before data is entered

• User requirements specification

• Translate to chosen data model’s schema (conceptual-design)

• Relational: which attributes, how to group them into tables

• Check if meets functional requirements: e.g. operations to search, update, modify

• Moving to implementation: logical & physical design

• Logical Design:

• from conceptual schema to implementation: SQL commands

• Physical Design: deciding on the physical layout of the database

The Entity-Relationship Model

• Models an enterprise as a collection of entities and relationships

• Entity: a “thing” or “object” in the enterprise that is distinguishable from other objects

• Described by a set of attributes

• Relationship: an association among several entities

• Represented diagrammatically by an entity-relationship diagram:

Object-Relational Data Models

• Extend the relational data model by including object–orientation

• object-identity

• inheritance

• encapsulation (information-hiding)

• Allow attributes of a row to have complex types

• Preserve relational foundations, in particular the declarative access to data, while
extending modeling power

XML: Extensible Markup Language

• Defined by the WWW Consortium (W3C)

• Originally intended as a document markup language not a database language

• The ability to specify new tags, and to create nested tag structures made XML a
great way to exchange data, not just documents

• XML has become the basis for all new generation data interchange formats.

• A wide variety of tools is available for parsing, browsing and querying XML
documents/data

• Data of same type, with different attributes

• flexibility

Data Storage & Querying

Storage
Manager

Query
Processor

Database

PROGRAM 1

PROGRAM 1

PROGRAM 2

Integrated
Database

DBMS

Query Processor

Storage Manager

…

Storage Management

• Interfaces the low-level data and the application programs and queries

• The storage manager is responsible to the following tasks:

• Interaction with the file manager (translates DML to filesystem commands)

• Efficient storing, retrieving and updating of data

• Manages data files, data dictionary, indices

• Issues:

• File organization

• Storage access

• Indexing and hashing

Query Processor

•DDL Interpreter

•interprets DDL statements for the data dictionary

•DML Compiler

•translates DML statements into low-level instructions

•Query evaluation engine

•executes the low-level instructions generated by DML compiler

Query Processing (Cont.)

• Alternative ways of evaluating a given query

• Equivalent expressions

• Different algorithms for each operation

• Cost difference between a good and a bad way of evaluating a query can be
enormous

• Need to estimate the cost of operations

• Depends critically on statistical information about relations which the database must
maintain

• Need to estimate statistics for intermediate results to compute cost of complex
expressions

Transaction Management	

• A transaction is a collection of operations that performs a single logical function in a
database application

• Transaction-management component ensures that the database remains in a
consistent (correct) state despite system failures (e.g., power failures and operating
system crashes) and transaction failures.

• Concurrency-control manager controls the interaction among the concurrent
transactions, to ensure the consistency of the database.

Database Architecture

• Architecture influenced by underlying computer system

• Centralized

• Client-server

• Parallel (multi-processor)

• Distributed

Database Users

• Application programmers – write applications that interact with the DB

• Sophisticated users – Use query language, e.g., SQL

• Specialized users – write specialized database applications

• Naïve users – use an application written previously

• Users accessing database over the web, bank tellers, clerical staff

• Forms & reports

Database Administrator

• Coordinates all activities of the database system

• Database administrator's duties include:

• Schema definition

• Storage structure and access method definition

• Specifying integrity constraints

• Granting user authority to access the database

• Monitoring performance and responding to changes in requirements

History of Database Systems

• 1950s and early 1960s:

• Data processing using magnetic tapes for storage

• Tapes provide only sequential access

• Punched cards for input

• Late 1960s and 1970s:

• Hard disks allow direct access to data

• Network and hierarchical data models in widespread use

• Ted Codd defines the relational data model

History (cont.)

• 1980s:

• Research relational prototypes evolve into commercial systems

• SQL becomes industrial standard

• Parallel and distributed database systems

• Object-oriented database systems

• 1990s:

• Large decision support and data-mining applications

• Large multi-terabyte data warehouses

• Emergence of Web commerce

• 2000s:

• XML and XQuery standards

• Automated database administration

