
select dept_name from department
where dept_id not in
(select dept_id from employee where salary > 3000);

The first query can be replicated by doing a (theta) join operation:

select employee.name, department.deptname

from department, employee

wheredepartment.dept id = employee.dept id and salary > 2000;

• Also enumerated sets:

select name, salary from employee
where title in (’CEO’, ’Web Developer’);

Set comparison

For the query “Employees with salary more than at least one other employee”, one possiblity is:

select distinct T.name, T.salary

from employee as T, employee as S

where T.salary > S.salary

Another way is by set comparison:

select name, salary

from employee

where salary > some (select salary

from employee);

Here, some implies at least one.

Notice that Kyle is not included as comparison with null value leads to an unknown.
Also, the sub-statement can only result in single attribute tuples so that salary can be compared
with them.
Also: < some, <= some, >= some, = some, <> some.
Similarly we have variations for all. For example, the query “Employees who make more than all
web developers” can be expressed in SQL as:

select name, salary

from employee

where salary > all (select salary

from employee

where title = ′Web Developer′);

5



Another use of all: “The title whose employees make the most salary on an average”

select avg(salary), title

from employee

group by title having avg(salary) >= all (select avg(salary)

from employee group by title);

Views

• till now: logical model level

• Often we need to create a different view of data:

– security

– personalized relations that are more intuitive than the logical model

create view v as < query expression >

Example:

create view CEOs as

select ∗
from employee

where title = ′CEO′;

– The view now acts as any other relation

– Can query it, describe it, or drop it.

∗ Can appear in any place a relation would if there is no update applied to it

create view expensive employees as

select name, salary, dept name

from employee, department

where employee.dept id = department.dept id and salary> 2500;

Can specify attribute names explicitly:

create view department spending(dept name, spending) as

select dept name, sum(salary)

from employee, department

where employee.dept id = department.dept id group bydept name;

• Views are computed whenever they are needed rather than when they are first created alone.

6



– When first created only the defn. of the view is stored.

– When the view appears in another query, it is evaluated then

• Some DBs actually store the content of a view at creation time, called materialized views,
and view maintenance has to be done.

– allows fast response for frequently used views

– however issues of storage costs, added overhead for updates

Views defined by other views.

– For example,

create view Top CEOs as

select ∗
from CEOs

where salary > 2500;

– Can expand views

repeat

Find any view vi in ei

Replace the view viby its expression

until no more view relations are present in ei

Modification

Deletion

• Can only delete a tuple/tuples. Cannot delete values for particular attibutes

delete from r

where P

Deletes all tuples t in r for which P(t) is true.

• delete operates on one relation only.

• delete from r deletes all tuples (should get a warning; not in MySQL!!).

• delete employees with null salary

delete from employee

where salary is null;

• delete employees from department ‘Programming’

delete from employee

where name in (select name

from employee, department

where employee.dept id = department.dept id and department.dept name = ‘Programming’;

7


