Null Values

select name
from employee
where salary is null;

also, is not null

Some rules for null values:
e think of unknown as a weaker false
e arithmtc ops (+, -, *, /) give an unknown

e if there is null in boolean operation in the predicate, (i.e., one operand of and, or, not) the
rules are:

— and. true and unknown = unknown, false and uknown = false, unknown and unknown
= unknown

— or. true or unknown = true, false or uknown = unknown, unknown or unknown =
unknown

— not. not of unknown is unknown.

e For the select command, only those tuples in r; X ry X ... X r,, are in the result for which the
predicate P evaluates to true. If unknown or false, then the tuple wouldn’t appear in the
result.

— So, the query: select *x from employee where salary < 2000; will not show a tuple
with null salary.

— A difference from regular rule for null in arithmetic operations is in aggregate functions.
So, select sum(salary) from employee will ignore tuples with null salary values.

Adding foreign key
You can add a foreign key for a table attribute after the table has been created:

alter table employee

add foreign key (dept;d)referencesdepartment;

Nested subqueries

e a select-from-where expression inside a query.

— For e.g.: departments with an employee who makes more than 3000:

select dept_name from department
where dept_id in
(select dept_id from employee where salary > 3000);

or



select dept_name from department
where dept_id not in
(select dept_id from employee where salary > 3000);

The first query can be replicated by doing a (theta) join operation:

select employee.name, department.dept,ame
from department, employee

wheredepartment.dept_id = employee.dept_id and salary > 2000;
e Also enumerated sets:

select name, salary from employee
where title in (’CEQ’, ’Web Developer’);

Set comparison
For the query “Employees with salary more than at least one other employee”, one possiblity is:

select distinctT.name, T.salary
from employee as T, employee as S

where T.salary > S.salary
Another way is by set comparison:

select name, salary
from employee
where salary > some (select salary

from employee);

Here, some implies at least one.

Notice that Kyle is not included as comparison with null value leads to an unknown.
Also: < some, <= some, >= some, = some, <> some.
Similarly we have variations for all. For example, the query “Employees who make more than all
web developers” can be expressed in SQL as:
select name, salary
from employee
where salary > all (select salary
from employee

where title = 'WebDeveloper');
Another use of all: “The title whose employees make the most salary on an average”

select avg(salary), title

from employee

group by title having avg(salary) >= all (select avg(salary)
from employee group by title);



