
Assignment Operation

• Assign a relation expression to a variable

• Helps in writing sequential programs

• Difference from rename operation?

temp1 ! !R - S (r)

temp2 ! !R - S((temp1 x s) - !R - S, S (r))

result = temp1 - temp2

Generalized Projection

• Use arithmetic functions in projection list

• !F1, F2, …, Fn(E)

• !name, they_owe - I_owe(friends)

• !name, (they_owe - I_owe) as actual_money_owed(friends)

name they_owe i_owe

Avi 200 150

Rachel 100 250

name actual_money_owed

Avi 50

Rachel -150

Aggregate Functions

• Input " collection of values, output " single value

• sum, avg, count, min, max

• Aggregate functions can operate on multisets: multiple occurences of same value

Aggregate Function example

emp_name dept_name salary

Fraust Resouces 2000

Hugo Testing 1300

Rao Development 1200

Vanessa Testing 2000

Chen Resouces 1200

Wayne Development 1400

employee relation

Query: Total salary paid to employees

#sum(salary)(employee)

1200

Query: No. of employees

 #count(emp_name)(employee)

6

Query: No. of departments

 #count-distinct(dept_name)(employee)

3

All aggregate functions take a “distinct” variation (since they work on multisets)

Grouping with aggregate functions

• If multiple values of an attribute, can group by it
emp_name dept_name salary

Fraust Resouces 2000

Hugo Testing 1300

Rao Development 1200

Vanessa Testing 2000

Chen Resouces 1200

Wayne Development 1400

employee relation

Query: Total salary in each department

More sophisticated. Divide first by groups of department

dept_name#sum(salary)(employee)

dept_name sum(salary)

Resouces 3200

Testing 3300

Development 2600

Query: Average & maximum salary in each department

dept_name#avg(salary) as avg_salary, max(salary) as max_salary (employee)

dept_name avg_salary max_salary

Resouces 1600 2000

Testing 1650 2000

Development 1300 1400

Outer Join

• Extends natural join

• Deals with missing information

• employee ! employee_personal

• leaves out non-matching tuples

• Outer join can make up these

emp_name dept_name salary

Fraust Resouces 2000

Hugo Testing 1300

Rao Development 1200

Vanessa Testing 2000

Chen Resouces 1200

Wayne Development 1400

employee relation

emp_name street city

Fraust Mesa Palo Alto

Hugo Walnut North

Manchester

Rao Main Oakland

Jenna Mesa Palo Alto

Chen Market Carbondale

Wayne Oak Miami

employee_personal relation

emp_name dept_name salary street city

Fraust Resouces 2000 Mesa Palo Alto

Hugo Testing 1300 Walnut North Manchester

Rao Development 1200 Main Oakland

Chen Resouces 1200 Market Carbondale

Wayne Development 1400 Oak Miami

Outer Join types

• Three types: ", #, $

emp_name dept_name salary street city

Fraust Resouces 2000 Mesa Palo Alto

Hugo Testing 1300 Walnut North

Manchester

Rao Development 1200 Main Oakland

Chen Resouces 1200 Market Carbondale

Wayne Development 1400 Oak Miami

Vanessa Testing 2000 null null

employee " employee_personal

emp_name dept_name salary street city

Fraust Resouces 2000 Mesa Palo Alto

Hugo Testing 1300 Walnut North

Manchester

Rao Development 1200 Main Oakland

Chen Resouces 1200 Market Carbondale

Wayne Development 1400 Oak Miami

Jenna null null Mesa Palo Alto

employee # employee_personal

emp_name dept_name salary street city

Fraust Resouces 2000 Mesa Palo Alto

Hugo Testing 1300 Walnut North Manchester

Rao Development 1200 Main Oakland

Chen Resouces 1200 Market Carbondale

Wayne Development 1400 Oak Miami

Jenna null null Mesa Palo Alto

Vanessa Testing 2000 null null

employee $ employee_personal

Null values

• “Non-existent” or “unknown” values

• Should be avoided if possible

• Arithmetic operation with null gives null

• Comparison (!, <, >, ", =, #, …) will give unknown

• With booleans (like used in select, which itself is used a lot)

•and: (true and unknown) = unknown, (false and unknown) = false, (unknown and unknown) =

unknown

•or: (true or unknown) = true, (false or unknown) = unknown, (unknown or unknown) = unknown

•not: (not unknown) = unknown

