Indexing

December 12, 2008

Introduction

m New tuple is stored without any order
m next available space

Introduction

m New tuple is stored without any order
m next available space

m Access will require inspection of every tuple

SELECT name, salary
FROM department
WHERE name LIKE 'A%’ ;

m requires visiting each row for comparison since no alphabetical
storage

Introduction

m Indexing: speeds up access to desired data
m e.g., a book index, catalog index in library

Introduction

m Indexing: speeds up access to desired data

m e.g., a book index, catalog index in library
m DB Indexes: used by DB server to locate tuples in a table
m Indexes: special tables with ordered tuples

m one (or more) columns from main table
m includes pointer to the full row in main file

Basic Index Operations in MySQL

m Create on the column most often used in queries, update, delete
m In MySQL.:

ALTER TABLE employee
ADD INDEX dept_indx (dept_id);

m Other DB:

CREATE INDEX dept_indx
ON employee (dept_id);

m View indexes on a table:
SHOW INDEX from employee;
m Drop an index:
ALTER TABLE employee drop INDEX dept_indx;

Multi-column Indexes

m Create index on two columns:

ALTER TABLE person

ADD INDEX name_indx (lname, fname);
m Can use for queries with:

m both 1name and fname
m lname alone
m not for fname alone

Basic Concepts for Index Implementation

m SearchKey - attribute to set of attributes used to look up records
in a file.

’ search»key‘ pointer l

® An index file consists of records (called index entries) of the form
m Index files are typically much smaller than the original file

m Two basic kinds of indices:

m Ordered indices: search keys are stored in sorted order
m Hash indices: search keys are distributed using a “hash function”

Dense Index Files

m Dense Index: search-key appears for every search-key value
from main file

L VAVAVAVLVAVAVAY]

Brighton = A-217 | Brighton 750

A-101 | Downtown 500

Downtown

i
Mianus —-\ A-110 | Downtown 600
Perryridge *\ A-215 | Mianus 700

Redwood — A-102 | Perryridge 400 -
Round Hill |~ A-201 | Perryridge 900 -
A-218 | Perryridge 700 -
A-222 | Redwood 700 -

A-305 | Round Hill 350

Figure: A dense index file

Indexing

Sparse Index Files

m Sparse Index: search-key appears for only a few values

Brighton ——1 A-217 | Brighton 750 B
Mianus “~d A-101 | Downtown 500 -
Redwood LN A-110 | Downtown 600 ﬁ

A-215 | Mianus 700 4

A-102 | Perryridge 400 -
A-201 [Perryridge 900 .
A-218 | Perryridge 700 -
A-222 | Redwood 700 w
A-305 | Round Hill 350 4

IJUU\)U\JUUU

Figure: A sparse index file

Indexing

B-Tree Indexes

m Balanced trees:
m length from root to any leaf is same
m every non-leaf node has # to n/2 nodes; n is fixed

®m Most common, default index type

1
|
|
E=—o=
R
T

,ﬁ i

{ A v v
Gooding Jameson Tucker

o Femiog Glossman Markham coiaed oty Tulman Tiegler

| - Blake Fowler me Mason Portman Smith Tyler

Figure: Example of a B-tree Index

Indexing

B-tree Indexes

m Sequential search (without B-tree index): O(n)
m B-tree search: O(log(n))

B-tree Indexes

m Sequential search (without B-tree index): O(n)
m B-tree search: O(log(n))
m Adds:

m performance overhead (insertion, deletion)
m adds space overhead

