Other Topics

December 12, 2008

Other Topics

1 Parallel Databases

2 Distributed Databases

Other Topics

Introduction

Motivation:

- cheap processing powerincreasing database size
- - genetic information
 - multimedia data

Introduction

Motivation:

- cheap processing power
- increasing database size
 - genetic information
 - multimedia data
- Large-scale parallel DBs
 - store large volume of data in parallel
 - process time-consuming decision support queries in parallel
 - high throughput

Parallelism in Databases

DB are ripe for parallelism

Parallelism in Databases

- DB are ripe for parallelism
- Data can be partitioned across multiple disks for parallel I/O
- Each relational operation (sort, join, ...) in parallel for single query (intra-query parallelism)
 - data partition ⇒ multiple processors work on independent partitions

Parallelism in Databases

- DB are ripe for parallelism
- Data can be partitioned across multiple disks for parallel I/O
- Each relational operation (sort, join, ...) in parallel for single query (intra-query parallelism)
 - data partition ⇒ multiple processors work on independent partitions
- Multiple queries can run in parallel (inter-query parallelism)
 - need concurrency control
- Query still in SQL

I/O Parallelism

- Reduce relation-retreival time by partitioning relations on disks
- Usually for large relations: horizontal partitioning
 - divide tuples of a relation: one tuple per disk

Partitioning Techniques

Round robin:

Partitioning Techniques

Round robin:

send i^{th} tuple to disk $i \mod n$

Partitioning Techniques

Round robin:

■ send ith tuple to disk *i* mod *n*

Hash partitioning:

- hash function, *h*, range: 0 . . . n 1
- choose attributes a₁,... a_m
- For tuple i: $h(a_1, \ldots, a_m) = k$;
 - \blacksquare \Rightarrow send i to disk k

Parallel System Design Issues

Parallel loading of data from external sources to handle large volumes of incoming data

Parallel System Design Issues

- Parallel loading of data from external sources to handle large volumes of incoming data
- Resilience to failure of some processors or disks.
 - Probability of some disk or processor failing is higher in a parallel system.
 - Operation (perhaps with degraded performance) should be possible during failure.
 - Redundancy achieved by storing extra copy of every data item at another processor.

2 Distributed Databases

Other Topics

Introduction

- DBMS consists of loosely coupled sites
- Individual site runs (fairly) independent of others
- A transaction can access data from any site

Distributed Data Storage

Replication:

• copies of data in several sites: fast retrieval, fault tolerance

Fragmentation:

Relation is partitioned at several sites (like parallel DB)

Distributed Data Storage

Replication:

• copies of data in several sites: fast retrieval, fault tolerance

Fragmentation:

- Relation is partitioned at several sites (like parallel DB)
- Transparent to user:
 - distribution (network)
 - replication
 - fragmentation
- Can combine fragmentation and replication

Advantages of Distributed Databases

- Cheaper to build multiple small sites
- Improve performance:
 - just like parallel DB
 - also, with replication, load-balanced response
- Increases modularity

Locality of reference

How near is the queried data?

Locality of reference

- How near is the queried data?
- Reliability and availability
 - Does the strategy improve fault tolerance and access?

- Locality of reference
 - How near is the queried data?
- Reliability and availability
 - Does the strategy improve fault tolerance and access?
- Performance
 - Are there bottlenecks or under-utilisation of resources?

- Locality of reference
 - How near is the queried data?
- Reliability and availability
 - Does the strategy improve fault tolerance and access?
- Performance
 - Are there bottlenecks or under-utilisation of resources?
- Storage
 - What is the effect on size of data storage?

- Locality of reference
 - How near is the queried data?
- Reliability and availability
 - Does the strategy improve fault tolerance and access?
- Performance
 - Are there bottlenecks or under-utilisation of resources?
- Storage
 - What is the effect on size of data storage?
- Communication costs
 - How much network traffic will result from the strategy?