
Addressing mode in MIPS

Different formats of addressing registers or memory locations are called addressing modes.

• Immediate addressing. where operand is a constant in the instruction. e.g. addi, lui,
slti, andi, ori, sll, srl

• Register addressing. when the operand is in a register. Simple, addresses location inside the
processor. e.g. add, sub, and, or, nor, jr

• Base addressing. where operand is at a location = (16-bit constant in instruction) + (memory
location stored in a register). Used for addressing elements of an array. e.g. lw, sw, lh,
sh, lb, sb

• PC-relative addressing. when the address of the operand = PC + (16-bit constant shifted
by 2). e.g.: branching instructions, beq, bne

• Pseudo-direct addressing. used for jump instruction. address = (26 bits shifted left = 28
bits) concatenated w/ upper 4 bits of PC. e.g. j, jal

Translating and Starting a program

Q. What happens when you compile a C program? When you run one?
There are 4 steps for transforming a C source code into a running program in memory: compiling,
aseembling, linking, loading (accomplished by systems programs). Of course in an IDE, these
steps are hidden from the user.
The steps taken are:

• Preprocessing. processing included header files, condition compilation (ifdefs), and macros

• Compiler. Produces an assembly language program, a symbolic form of machine (binary)
language. Much more lines than the source code. Low-level code (OS, assemblers) were
written in AL.

• Assembler. Translates the assembly program into object file: machine code + (global) data
+ information for placing instructions in memory properly.

– header. size and position of sections in .o file.

– text. contains machine code

– static data. Data that will available for the lifetime of program

∗ .bss uninitialized global data

∗ .data initialized global data

∗ .rodata read-only global data. string literals and constants.

– relocation information. instructions and data that depend on absolute addresses
when the program runs. For e.g. j Label1. Linker uses this info to adjust section
contents. For e.g. the linker tracks the address of a procedure so other procedures may
call it.

2

Figure 1: Steps for translating a C program

Figure 2: Linking the objects files

3

Figure 3: Use of relocation records

– symbol table. tracks labels. set of label symbols and their addresses. Since assembler
needs to remove traces of all labels.

– debugging information. description of how code was compiled

Assembler also provides pseudoinstructions to make things easy for assembly code writer.
For e.g. move $t0, $t1 is a p-instruction that is translated as add $t0, $zero, $t1. Sim-
ilarly, blt is translated into slt and bne, and so on. Assembler reserves register $at for its
own purposes like these.

• Linker. Stitches all independent assembled, machine language programs into one.

– Changing one line of code would require recompilation.

– obvious for personal code. Very wasteful for libraries, since they never change.

– Better:

∗ Compile & assemble code separately so recompilation is contained

– Linker also allows us to develop libraries in isolation

– Three steps in linking

∗ place code and data in memory symbolically

∗ determine addresses of data and instruction labels

∗ patch internal and external references

– Uses relocation info and symbol table in each .o module to resolve undefined labels

– produces an executable file w/ same format as .o file but with no unresolved references.

– Statically linked vs. dynamically linked

4

∗ with static approach: can be using old linked library; size issues

• Loader. Loads the executable in memory to start it

– reads size of text and data segments

– creates address space for them and copies them to the created space

– copies arguments for main to the stack

– initializes registers (sets to 0) sets SP to 1st free location on stack

– calls a start-up routine that copies args to arg registers and calls the main routine.

5

