Ch. 5: Processor + Memory

December 12, 2008

Processor: Datapath and Control

m Goal:

m implement hardware to execute instructions
m study issues of performance

m Basic instruction set:

m 1w, sw(memory reference)
m add, sub, and, or, slt (arithmetic-logical)
m beq, j (branches)

Generic Implementation

O

Figure: Cycle of Execution Instruction

Overview of Implementation

Outline

Overview of Implementation
m Two more details

Overview of Implementation

Steps of Executing an Instruction

m 1: All classes of instructions require initially:

m Fetch instruction from memory
m Read value of CPU registers (1 or 2)

Overview of Implementation

Steps of Executing an Instruction

m 2: Common amongst all (except j): after reading registers, use ALU
m calculate address (memory reference)
m to add (arithmetic-logical)
m compare (branches)

Overview of Implementation

Steps of Executing an Instruction

m 3: Different for each class

m access memory to r/w (memory reference)
m write from ALU to register (arithmetic-logical)
m change PC to jump address (branch)

Overview of Implementation

Abstract View of Implementation

Address

Instruction
memory

Instruction

Data
Register #
Registers

Register #

Register #

ALU

Address

m

Data

Data
emory

Overview of Implementation
@000

Choice for Data

Data

Register #

> Address Instruction Registers ALU
Register #
Instruction e
memory Register #

Can’t just join the wires

Address

Data
memory

Data

Overview of Implementation
Oe00

Choice for Function

4 —>|

@ Choice for function

Address

Instruction
memory

Instruction

Data
Register #
Registers

Register #

Register #

)
Address

Data
memory

Data

Figure: Some Units with Choice for Function

Overview of Implementation
[ole] lo}

Adding details

Branch
'am
M
u
X
N/
ALU operation
Data I
Register # Memrite
Address Instruction 4 Registers M o Address
Register # M Zero
Instruction u mg:::r H
memory Register # RegWrite |'>X v
Data
MemRead
I
Control }
[

Figure: Adding multiplexors and control

Overview of Implementation
oooe

Logic Elements

m Combinational elements

m without memory; o/p depends on i/p
m basic elements: AND, OR, AND, ...
m ALU, multiplexors

Overview of Implementation
oooe

Logic Elements

m Combinational elements

m without memory; o/p depends on i/p
m basic elements: AND, OR, AND, ...
m ALU, multiplexors

m Sequential or state elements

m o/p depends on i/p + current state
B memory, registers

Combinational Elements

Outline

Combinational Elements

Combinational Elements

Multiplexor

m Select one i/p out of many, based on a signal

Combinational Elements

Multiplexor

m Select one i/p out of many, based on a signal

m 1-bit Mux with 4 input lines

Iy I I I3

So

T
Lo

Figure: Selectly, I, I, I3 based on Sy, Sy

Combinational Elements

32-bit Multiplexor

Select

Figure: 32-bit Mux with 2 input lines

Combinational Elements

32-bit Multiplexor

Select

i

=]
=

A31 ——*

C31

B31 ——™

)TGC

A30 —[0
u —*>C30
B30 —1 X :

!

co

- “|:

Figure: 32-bit Multiplexor construction

Memory

Combinational Elements

One-bit Adder

m Simple adder:

m 1bit numbers
m carry in, carry out

Combinational Elements

One-bit Adder

m Simple adder:

m 1bit numbers
m carry in, carry out

Carryin
a —»|
A —> Sum
b —
CarryOut

Figure: One-bit adder

Combinational Elements

One-bit Adder

m Simple adder:

m 1bit numbers
m carry in, carry out

Carryin
a —»|
A —> Sum
b —
CarryOut

Figure: One-bit adder

Cout =a-b+a-cin+tb-cin

sum = a xor b Xor Cin

Combinational Elements

32-bit adder

m Constructing 32-bit adder from 1-bit adders

g
a0 ————— > Cin
+ —_—
_
bo Cout
al — Cin
+ —_—

bt Cout

a2 —— Cin
—_—
+

b2

a3l —m— Cin
+

b31 I

Carry out

sum0

sum1

sum2

sum31

Combinational Elements

Simple One-bit ALU

<r—>j > ! —> Result

CarryOut

Figure: One-bit ALU: AND, OR, ADD

Combinational Elements

Simple One-bit ALU

<r—>j > ! —> Result

CarryOut

Figure: One-bit ALU: AND, OR, ADD

m 00 > AND
m 01 - OR
m 10 » ADD

Combinational Elements

Adding Subtraction

m Negate b and add

Combinational Elements

Adding Subtraction

m Negate b and add

CarryOut

Figure: Adding subtraction

Combinational Elements

Adding Subtraction

m Negate b and add

Control lines
a Function | Binvert | Operation
(1 line) (2 lines)
and 0 00
or 0 01
b add 0 10
subtract 1 10

Figure: Control signals

CarryOut

Figure: Adding subtraction

Combinational Elements

32-bit ALU

y v ¥

a0 —
b0 —

Carryln

ALUO

CarryOut|

Result0

2 v

—|
—]

al
b1

Carryln
ALU1

CarryOu

[—— " Result1

¥ ¥

—]
—

a2
b2

Carryln
ALU2Z

T Result2

CarryOut

|

Carryin

a3l —+
b31 —

Carryln
ALU31

[Result31

Carry Out

Combinational Elements

Adding set-less-than

m Can be implemented with subtraction

m For all except LSB: output is 0

m For LSB: output is sign(A — B)

Combinational Elements

Adding set-less-than

m Can be implemented with subtraction

m For all except LSB: output is 0

m For LSB: output is sign(A — B)
m Strategy:

m Input of all ALU’s except LSB: 0 (passes through)
m Input of LSB: Set output of MSB

Combinational Elements

ALU Designs with SLT

Binvert Operation

Carlryln |

a
0
1

—* Result
b — 0 + 2
1
Less 3
CarryOut

Figure: ALU for non-MSB bits with 5 functions

m Operation: 3, BInvert: 1

— Result
b —
Less
Set
Carry Out

Overflow
M" Overflow

Figure: ALU for MSB bit (with shiny overflow
detection!)

Combinational Elements

32-bit ALU with SL

Binvert

|
Ll
a0 —*| Carryin

b0 —| ALUO

Less
CarryOut|

Resulto

11

al —*| Carryin

b1 —| ALU1
0 —>| Less
CarryOut|

Result1

11

a2 —*| Carryln

b2 —| ALU2
0 —>| Less
CarryOut

Result2

lcarryln
|
28

a31 —| Carryln [Result31

b31 —| ALU31

Set

0 —>| Less

[

Overflow

|, Carry Out

Sequential Log

Outline

Sequential Logic Elements
m Clock
m Latches and Flip Flops
m Register File
m Memory Design

Sequential Logic Elements
®0

Clock and Clocking Methodology

m When should a sequential element’s state be written/read
m in a synchronous system

]

Falling edge

Clock period Rising edge

Figure: Clock Signal

Sequential Logic Elements
®0

Clock and Clocking Methodology

m When should a sequential element’s state be written/read
m in a synchronous system

]

Falling edge

Clock period Rising edge

Figure: Clock Signal

m Edge-triggered clocking
m fall or rise is active
m causes state change
m usually rise

Sequential Logic Elements
oe

m I/p, O/p to combinational elements — sequential elements

Sequential Logic Elements
oe

m I/p, O/p to combinational elements — sequential elements
m . they don’t store anything

Clock cycle

State
element
1

Combinational logic

State
element
2

Figure: Combinational Logic behavior with Clock

S-R Latch

m Simplest memory element

m Output = stored value

m Change stored value: set-reset
m Unclocked

S-R Latch

m Simplest memory element

m Output = stored value

m Change stored value: set-reset
m Unclocked

R SR Latch
Q
S R Action
0 0 Keep previous state
0 1 Q=0
1 0 Q=1
s Q 1 1 lllegal operation

Figure: S-R Latch Figure: Operation of the S-R Latch

D Latch

m Output = stored value
m Stored value changes based on clock (enable)

C

Figure: D Latch

D Flip-Flop

Q

Previous value

D
X
0

0 (Reset)

1

1(Set)

Figure: D Latch Operation

D Latch

m Output = stored value
m Stored value changes based on clock (enable)

C

Figure: D Latch

m Functioning:
mC=1=Q=D
B C=0= Q= Dprevious

D Flip-Flop

Q

Previous value

D
X
0

0 (Reset)

1

1(Set)

Figure: D Latch Operation

Sequential Logic Elements
ooe

D Flip-Flop

m Slightly more complicated than the latch

p—+—1p D 1
b Q 5 Q Q)))) ‘)))
latch latch _ _ ctoox —I "L I T
& ¢ Q2 S I A e T rurTe
D N . ; . X : + .
c—l time —
(a) The D latch (b) The D #ip fop

Figure: D Flip-Flop and Latch

Figure: D Flip-Flop

D Flip-Flop

Sequential Logic Elements
ooe

m Slightly more complicated than the latch

latch latch _
(o] Q

Figure: D Flip-Flop

crook — LI 1
D N . ; .
Q ‘time —
(a) The D latch

(b) The D #ip fop

Figure: D Flip-Flop and Latch

m Latch: state changes with change in input and clock being asserted (=1)

m Flip-flop: state changes only on clock rise

D Flip-Flop

Sequential Logic Elements
ooe

m Slightly more complicated than the latch

latch latch _
(o] Q

Figure: D Flip-Flop

crook — LI 1
D N . ; .
Q ‘time —
(a) The D latch

(b) The D #ip fop

Figure: D Flip-Flop and Latch

m Latch: state changes with change in input and clock being asserted (=1)

m Flip-flop: state changes only on clock rise

m not as transparent as latch
m Only flip-flops since using edge-triggered clocking

Registers

’[’7[) 7’41]
5 C
R

5L b A
. >C
R

I I b |—a4
{ L C
R
7
|

I D Az
+—+— C
R

Clock Clear

Figure: Simple register made with flip-flop

Sequential
(o] lelele]

Register File Design

m Set of registers

m Read/write by supplying register no. (and data)
m Uses D Flip-Flop as building block

Sequential Logic Elements
O@000

Register File Design

m Set of registers

m Read/write by supplying register no. (and data)
m Uses D Flip-Flop as building block

Read register
T ™| number 1
Read |
Read register data 1
|
number 2
: Register file
Write Read
I .
register data 2
_ e— Write
data Write

Figure: Register File Design

m 2 read ports, 1 write port

Sequential
(ole] lele]

MIPS Register File

m 32, 32-bit registers

Read register

number 1 Read |32
data 1 +"

Read register

5z,
—,54>
number 2
Register file

5 W rite

+’ register
Read 3;:

32 W rite data 2

7% data W rite

Figure: MIPS registers

m 5-bit read and write lines
m 32-bit data lines

Reading from Register Files

Sequential Logic Elements

(elejo] lo]

Read register
number 1

Read register
number 2

i
A
Register 0
Register 1 M
5 u
Register n— 1 X
Register n
n=31 p—
)
A
M
u
X
N/

—* Read data 1

—* Read dala2

Figure: Reading from RF - internals

Read register

number 1 Read
data 1
5£ Read register
number 2
Write Register file
register
Read
Write data 2
data Write
'Y
Figure: Reading from RF - the lines

Sequential Logic Elements
0O000e

Writing to Register Files

Write
c
0 D_ s Read register
1 b Rogeter number 1 Read
g data 1 ’
y nto-1 | ¢ Read register
Register number —#<»{ Aacaaa | Register 1 —_— numbeE2
D .
| .. Register file
m 5 Write 0
L f 7| register
n=31 : Read
L e 37 | wiite data 2
Registern - 1 data Write
4
L Oe
32 Register n
Register data D

Figure: Writing to RF - the lines

Figure: Writing to RF - internals

Sequential Logic Elements
@00

Introduction

m Two technologies

m Static Random Access Memory
m Dynamic Random Access Memory
m both volatile

m Constructed from smaller chips

m Each chip has a configuration:

m 128M*1: 128M addressable locations of 1-bit each
m 16M*8: 16M addressable locations of 8-bit each

Sequential Logic Elements
oceo

Memory Chip Design

m read/write: 8 bits wide

m 32K addressable locations
m Functioning:
m CS (Chip Select): 1 for r/w
m R=0, W=0 = chip not being
accessed
m R=0, W=1 = write data in
Din at Address location
m R=1, W=0 = read into Doyt
the value from chip at
location Address

Ghip select
> 8

Readenable | _p Doutir- 0]
32K *x 8

Write enable >

8

Din[7=- 0] N—»

Figure: A 32K*8 RAM

Sequential Logic Elements
ooe

SRAM Structure

Dinf1] Dinfo]

1

—{C latch
Write enable —————————— Enable Enable
0 | 1 (f

2104 —b , 1o 5
decoder | o
—1C latch

J— Enable l— Enable
1 |

—{C latch

o

—{C lach Q|

—1° »o — P o

Address = —c wen o[1 | —c tach af—¢
Enable Enable
—b 1o

—c wen o[1 —c tach af—¢

(Enable f Enable

Dout(1] Dout{0]

Figure: Bsic Structural Design of 4X2 SRAM Chip

or + Memot

MIPS Processor Design

Outline

MIPS Processor Design
m Pipelining
m Example: Load Instruction

MIPS Processor D

Introduction

m Implementation of MIPS System

m Datapath: MIPS Processor + Memory
m also control unit

m Single cycle design: all instructions take one clock-cycle

MIPS Processor D

Introduction

m Implementation of MIPS System

m Datapath: MIPS Processor + Memory
m also control unit

m Single cycle design: all instructions take one clock-cycle

m long clock period (accomodate slowest instruction)
m cannot reuse resources in a single cycle = duplication

Datapath Elements

—+|PC

a.Program counter

S|
Register 5
numbers
5
|

32
Data < =t

Read
register 1

Read

register 2
Registers

Write

register

Write
data

Read
data 1

Read
data 2

Data

c.ALU

d. Adder

Address

Write
data

32

e

Data
memory

. Data memory unit

32

NN

Instruction
address

Instruction
memory

Instruction

32

Jv'

Figure: Elements used in MIPS Datapath

f . Instruction memory

5: Processor + Memory

Edge-triggered Methodology

State /___\ State
c jonal logic

element element
1 2

Clock cycle J \—r

Figure: Edge-triggered Methodology

MIPS Processor D

Edge-triggered Methodology

State /___\ State
c jonal logic

element element
1 2

Clock cycle J \—r

Figure: Edge-triggered Methodology

m Execution strategy:
m read content of a state element at beginning of clock cycle
m send values through a combinational element
m write result to a state element at end of clock cycle

m edge-triggered = read and write in same cycle

PC Increment

MIPS Processor Design

L

44—

A4

read address

Clock

Instruction Memory

Figure: PC Increment Circuit

Instruction ——»

MIPS Processor Design

Datapath for R-type Instructions

Ciocks| | [HeaNEEES

bsai [Reas 2 ’
> register 1 o ‘"
lg1s| R eae Sisien =
Instruction ¥ P[register 2 Zero] o
b Registers Ayl g
bigqg| W rite result
—| register
Read
W data 2
™ cata
add =32
31 2625 2120 1615 110 65 :;b:i;
Rtype [000000[rs [rt | rd [00000 [funct i
and = 36
or = 37

nor= 39

Datapath for load/save Instructions

31 26 25 2120 16 15 0
swor lw ‘opcode I— rs | rt | offset |

b1 Read
> register 1

MIPS Processor Design

Read
|2m§ Read data
Instruction register 2
TP hone e REIEET
p et Address
register
Write
| data
W rite
data

Read
data

Data
memory

m Control signals:

m lw, sw: ALU control=0010 (for address calculations)
m sw: Memread=0, Memwrite=1, Regwrite=0
m lw: Memread=1, Memwrite=0, Regwrite=1

MIPS Processor D

Datapath for Iw, sw and R-type Instructions

Clock | |
:| Clock | ‘
o Roaq Registers
register 1
Read r fens
ea
address rt_ Read
register 2 9ata 1
Instruction (4
0 Write Read Address ~ Read
rd % —
register data 2 data
. 1
_— Instruction Wit et
oc memory —*{ yata
Write Memory
data
16 [sign \32
offset
extend

or + Memot

Datapath for beq Instruction

MIPS Processor Design

31 2625

2120 16 15

‘ beq | rs

Branch target = [PC] + 4 + 4xoffset

Instruction

PC + 4 from instruction datapath —|

e Read
register 1 Resd
t Read data 1
register 2
Registers
W rite
register Read
data 2
W rite a
data
16 3z
offset Sign
extend

Add Sum

Branch target

To branch
control logic

ALU Zero

Figure 5.9
with additions in red

Datapath for R-type, lw/sw, beq Instructions

Add
Clock
!
Instruction [25-21] rg |Read
Read register 1 Read
address Instruction [20- 16] Read data 1
register 2 Zero
Instruction
B1-0 t 0 Read) ALU ALU
M Write data 2 result dd Read 1
M ™ register M data[
Instruction Instruction [15-11] | x Write u M
memory ¢ 1| Plcata Registers L X
clock rd Write Data 0
MemRead=1 RegDst data memory
MemWrite=0 Instruction [15- 0] 16 [sign 32 |
extend _J siils
MemRe:

offset

Ch. 5: Processor + Memory

Datapath and Control Circuit

Instruction (31 26] |
opcode

__/ ReaWite
" —____Clock anded
Instruction (25 -21] IS

Read
register 1 ond Clock anded
data 1

Instruction (20 <16]

register 2

Address

insteuction
ractionl {2 Registers Read
Wi data
Instruction register
Clock Instruction (15 -11] Wite
1 data
rd
MemRead=1
MemWrite=0 Instruction (15 0 offset 1°

Instruction (5 0] ful

Ch. 5: Processor + Memory

Control Signals and Opcode

MIPS Processor Design

R-type

sw

beq

Input Output
Memto- | Reg | Mem | Mem
Op-code RegDst | ALUSrc Reg |Write | Read | Write | Branch | ALUOp1 | ALUpO
000000 1 0 0 1 0 0 0 1 0
100011 0 1 1 1 1 0 0 0 0
101011 0 1 0 0 0 1 0 0 0
000100 0 0 0 0 0 0 1 0 1

Figure: Control signals depend on the Opcode

Control Signal Generatio

n

MIPS Processor Des

Inputs
op5

Op4

0p3

op2

Op1

Opo

o4
-
—

R-format]

[_ =
N S5

Outputs
RegDst
ALUSrc
MemtoReg
RegWrite
MemRead
MemW rite
Branch
ALUOp1

ALUOpO

Datapath for R-type, Iw/sw, beq, j Instructions

5: Proce:

Instruction [25-0] @ Jump address [31-0]
26 *2 /28 5 i
PC131-28]
Cea [31-28] | M M
X X
1 0
Instructon [31-26]
Jostruction (31-26] |
nstruction [25- 21) Read
Read register 1 Rea
address ad
nstruction [20- 16] Read dats)
register 2
\nslr[-_,ﬁgnun] —d L' () Registers Read| AU ALY Rea
M Write data 2 o result f——| Address cadl oy
Instruction u register [et M
u
memary. T Wite x Data X
data 1 memory 0
Write
data
nstruction [15-0] e

Instruction [5-0]

Figure: The complete datapath

sor + Memory

Control Circuit with Jump Included

Jump =0p;0p,0p;0p,0p;0p,

Inputs
ops
op4
op3
op2
op1
opo

J

R-format]

D— ALUSIC
D— RegW rite

MIPS Processor D

About Single-cycle design

m Inefficient design

m Single-cycle design = CPI =?

MIPS Processor D

About Single-cycle design

m Inefficient design

m Single-cycle design = CPI =?
m CPI=1
m Slowest instruction = Longest possible machine path

MIPS Processor Design

About Single-cycle design

m Inefficient design

m Single-cycle design = CPI =?
m CPI=1

m Slowest instruction = Longest possible machine path
m the load instruction; uses 5 functional units:

instruction memory
register file

ALU

data memory
register file

MIPS Processor Design

About Single-cycle design

m Inefficient design
m Single-cycle design = CPI =?
m CPI=1
m Slowest instruction = Longest possible machine path

m the load instruction; uses 5 functional units:
]
]
]
]
]

m Fastest?

instruction memory
register file

ALU

data memory
register file

MIPS Processor Design

About Single-cycle design

m Inefficient design
m Single-cycle design = CPI =?
m CPI=1
m Slowest instruction = Longest possible machine path

m the load instruction; uses 5 functional units:
]
]
]
]
]

m Fastest?
m probably jump

instruction memory
register file

ALU

data memory
register file

About Single-cycle design

m Acceptable if fewer instructions

MIPS Processor D

About Single-cycle design

m Acceptable if fewer instructions
m used in older, simpler ISA implementations

MIPS Processor D

About Single-cycle design

m Acceptable if fewer instructions
m used in older, simpler ISA implementations

m terrible for ISA with complex instructions, such as floating point operations

MIPS Processor D

About Single-cycle design

m Acceptable if fewer instructions
m used in older, simpler ISA implementations

m terrible for ISA with complex instructions, such as floating point operations

m Dual problems:

m violates “make the common-case faster” principle (performance)
m need to duplicate hardware (cost)

MIPS Processor D

Improvements over Single-cycle Design

m Two ways to improve (performance and cost):

= multi-cycle design:
W some instructions run faster than others

MIPS Processor Design

Improvements over Single-cycle Design

m Two ways to improve (performance and cost):
= multi-cycle design:
B some instructions run faster than others
m Pipelining:
m Overlap execution of instructions

Pipelining

or + Memot

Oe000000000

Pipelining: Introduction

m Run multiple instructions in parallel

m Improves performance and hardware utilization

m similar to assembly line, laundry cleaning

MIPS Processor Design
00®@00000000

Example of Pipelining

Memory

MIPS Processor Des
000e0000000

Introduction

m First: identify steps in instruction execution

MIPS Processor Design
000e0000000

Introduction

m First: identify steps in instruction execution
m Five steps in any MIPS instruction:

m Fetch instruction

m Read registers (while simultaneously decoding)
m Execute operation / calculate address
m Access data memory
m Write results to register

0000000000

Execution Time Improvement with Pipelining

Load word (1w) 200 ps 100 ps 200 ps 200ps | 100ps | 800 ps
Store word (5W) 200 ps 100 ps 200 ps 200 ps 700 ps
Rformat (add, sub, AND, 200 ps 100 ps 200 ps. 100ps | 600 ps
OR, 51t}

Branch (beq) 200 ps 100 ps 200 ps 500 ps

Figure: Total time for each instruction

Program
execution
order

(in instructions)

Iw $1, 100(30)

. 200 400 600 800 1000 1200 1400 1600 1800
Time T T T T T T T T T

Instruction Data
fetch ALY

Aeg access

Reg

Iw $2, 200(30) 800 ps “‘ﬂ';‘ﬂm ALY sgjé'; ‘Reg

Iw $3, 300(30) 800 ps ms&ﬂun

800 ps

Reg

Figure: Single-cycle non-pipelined execution

0000000000

Execution Time Improvement with Pipelining

Load word (1w) 200 ps 100 ps 200 ps 200ps | 100ps | 800 ps
Store word (5W) 200 ps 100 ps 200 ps 200 ps 700 ps
Rformat (add, sub, AND, 200 ps 100 ps 200 ps. 100ps | 600 ps
OR, 51t}

Branch (beq) 200 ps 100 ps 200 ps 500 ps

Figure: Total time for each instruction

Program
execution
order

(in instructions)

Iw $1, 100(30)

. 200 400 600 800 1000 1200 1400 1600 1800
Time T T T T T T T T T

Instruction Data
fetch ALY

feg access

Reg

w $2, 200(50) 800 ps e |Fee| AU | e ‘F"’g

Iw $3, 300(30) 800 ps ms&ﬂun

800 ps

Reg

Figure: Single-cycle non-pipelined execution

m Total execution time: 800 * 3 = 2400 ps

Execution Time Improvement with Pipelining

MIPS Processor Design
00000e00000

Program
execution . 200 400 600 800 1000 1200 1400
T T T T T T T

Time
order
(in instructions)

Iw §1, 100($0) | "Siruction @ AU | o |Res
Iw $2,200(30) 200 ps | ™" |Reg| AU | 23 |meg
w $3, 300(30) 200ps |ma| |res| au | O%e |req

200ps 200ps 200ps 200ps 200 ps

Figure: Pipelined execution

m Total execution time: << 2400 ps

000000e0000

Pipelined Execution

m Clock cycle relates to single operation, rather than an instruction

m Accomodate the slowest operation: 200 ps

m Read and write to register can happen in different halves of same cycle

MIPS Processor D
0000000 e000

Pipelining the Datapath

Fiinstuionfeich | ID:nstucton decode/ | EX:Exacute/ | MEM:Memoryaccess | W: Wi back
| regsterflercad | addresscaluaton | }
i | | i
i | | |
i | | |
i | | i
i | | |
| | | |
i] | i
i | | i
i | | |
i | | i
i | | i
| | | |
_ i I
i] | i
o=y 1 1 i
i | ! |
i | | i
i | | |
i | | |
| | | i
i | | i
! Read Read : I I
! register at I
Address | cand B 1 L |
i | | |
| o2 | Ados |
st gy (0 i -
! wie o pead| | " ! ™ e
nstrcton | | bR ed I . ! s | |
i e 141 | [
i (5 | ; wito |
o
i | 1 i
i | | |
i | |
i 1 @ 1 |
th— !
i T |
i] |
i | |
i 1 |
i
i ' i
i | |
i | |
i | |

Figure: Datapath without pipelining

m Data flows left-to-right through stages, except
m write to register and write to PC
m does not affect current instruction

00000000800

Instruction Execution in Pipeline

Time (in clock cycles)

Program
execution CC1
order

{in instructions)

CC3

Iw §1, 100($0)

Iw $2, 200{$0)

Iw &3, 300($0)

Figure: Instruction execution in single-cycle datapath with pipeline

m Virtually every instruction has its own datapath, but staggered

0000000000

Pipelinig the Datapath

m Need to store data for an instruction as it passes through the datapath

m for e.g., the value read from IM must be stored so it’s available for later stages
m = add registers at every stage

m Each instruction advances to next stage on clock cycle

MIPS Processor D
000000000 0e

Pipelining the Datapath

171D Ex ExnE MENAE
—
hc
&> Adg %]
S Tesut
left2
o
u
u b e Fead e
X register oad ||
1 s data 1
Rea o o
Instruction register 2 ALY
peniecet — Registers g Ay %
Write datazl % oy]
register = u
e x
data ol * y
6 | sign- |3 |
"> extena

Figure: Pipelined Datapath

or + Memot

MIPS Processo

Example for load instruction

MIPS Processor D

First Stage

e X BoEn MW
ds
4] Aca o9
3 e
(haress Feso
regsin | Pl =
Fesd -
. regsi 2
— Fasa
mamory. e o7 Reas dtress il S [S
regser _—
virte momory
e
18 [o\
" extena

Figure: Instruction Fetch

Ch. 5: Processor + Memory

w

nstruction fetch

e

X BoEn

ds
P

H Aaaress

Instruetion
memory.

Feso

regisir | Feat

Fesd
regsi 2
Fegleters s

a2
S
a2

dtress

oaa
mamory

Fasa
oy

MW

Figure: Instruction Fetch

m Fetch instruction; Increment PC (save in IF/ID register also)

MIPS Processor Des

Second Stage

Iw

Instruction decode

1FD 1DEX ExmEn uEmws

-

Instruction
‘mamory

rsiructin

rogister Road | |
Y daa 1

rogstor2
Rogisters gaq
qanzl |

3

Figure: Instruction decode and register read

MIPS Processor D

Second Stage

Iw

Instruction decode

1FD 1DEX ExmEn uEmws

>

i N
Sl T am|
& s daa 1
K
i per
i —] Lo
e Write data 2|
. —
o
o
B

Figure: Instruction decode and register read

m Store in ID/EX registers:
m Incremented PC address
m 2 register values
m sign extended offset

Third Stage

1FD 10X EXMEM MEMWD
—
Add
4 ghcd
A bt
otz
ro o [Feas
S Read
B[B
e B3 g A 2
tructi 21 regist;
vl S O T Ay -8
L | Wit Read (0, resul]
wgeter dea - u
| Wiite X
' g
data 5
16 gign |2]
| exene

Figure: Execute or Address Calculation

5: Processor + Memory

Third Stage

1FID ID/EX EXMEM
—
Adg
4—
PC c Road
5 Read
2 rogisors Fead
H Read
Instruction £ register 2
— 9 Registers
Wiita Foad ——|
register data 2
| Wite
data
1
|

MEMWE

MIPS Processor Design

Figure: Execute or Address Calculation

m add register 1 to offset
m sum place in EX/MEM register

Fourth Stage

Memory

) DX ExvEn wEMwWE
A4 —
4 — add, A0
shitt
oz
u s
u g Read
x] ogisor 1 Foad ||
: " daa s
S| Feas
Instruction D e
4 e "1 (o
P regiter "
rte H
ata b\
16 2
I —

Figure: Memory Access

5: Processor + Memory

MIPS Processor Design

Fourth Stage

) DX ExvEn wEMwWE

—
add, A0
shitt oo
oz

foad

Foad
agar
! catat

Read
Instruction rogister2
o

Rogisters g9
daa2|

Figure: Memory Access

m Joad the memory data into MEM/WB register

MIPS Processor D

Fifth Stage

F0 DX S MEMWE

Ad
L —

]

u e [paess.

3 Rass

: a1
Instruction
memery " [-

Figure: Write Back

or + Memot

MIPS Processor Design

Fifth Stage

[P

Wirite-back

F0 DX S MEMWE
Ad
& — add A%
shiy L
lofi 2
]
u e [paess. ass e
oo "
a1 |
Instruction ropistec 2
e —* Registors pgag

- E

Figure: Write Back

m Read from MEM/WB register into register file
m Error?

MIPS Processor Design

Fifth Stage

[P

Wirite-back

F0 DX S MEMWE
Ad
& — add A%
shiy L
lofi 2
]
u e [paess. ass e
oo "
a1 |
Instruction ropistec 2
e —* Registors pgag

- E

Figure: Write Back

m Read from MEM/WB register into register file
m Error?
m save address for register file is not preserved

MIPS Processor Des

Corrected Pipeline Datapath

#10 10X exven EMwE

4 — Add A%
shin
o2

5
M ;=
E—
D i -
Ul
el =
e L g |
1,
B
[|cata

Figure: Correction made for load instruction

Control Lines

m Store and pass Control signals as well

Control Lines

m Store and pass Control signals as well

E 1/Address Calculati Memory stage | stage control
stage control lines control lines lines
Reg ALU ALU ALU Mem | Mem Reg [(Mem to

Instruction Dst Op1 Op0 Src_[Branch| Read | Write | write Reg
R-format 1 1 0 0 0 0 0 1 0
1w 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beg X 0 1 0 1 0 0 0 X

Instruction

—_

IF/ID ID/EX EXIMEM MEM/WB

Figure: Including control signals

MIPS Processor D

Complete Pipelined Architecture

5 IDEX
M N B
u P —EWMEM
:] fve]
{cortot | l_ usr\mwa
IFID Nz :
Add
4 ‘V Add rgsuit
- Read 2
Lo s B "[reastert Read ‘ =
2 data 1 [|
s 21| register 2 41T E
\n;:emﬂ:zy = w Regislers Rread AU ALyl Read
e = 1 N
1 e dala 2 result Addroes data
| Data
| wite st
data el
Wiite
dela
Instruction '
n5-0 P [sgn | & mRea
extend -
Instruction
| | 616
Instruction
[15-11]

Figure: Datapath and Control of Pipelined MIPS

or + Memot

	Overview of Implementation
	Two more details

	Combinational Elements
	Sequential Logic Elements
	Clock
	Latches and Flip Flops
	Register File
	Memory Design

	MIPS Processor Design
	Pipelining
	Example: Load Instruction

