What about negative nos.?

e Same binary representation
e Two’s complement

e 32-bit word

o -231t0 4231 -1 (or-2,147,483,648 to + 2,147,483,647)

Control

* Decision making instructions

— alter the control flow,

— i.e., change the "next" instruction to be executed

* MIPS conditional branch instructions:

bne $t0, $t1, Label
beq $t0, $t1, Label

« Example: if (i==3j) h =1 + 7J;
bne $s0, $s1, Label

add $s3, $s0, $s1
Label :

Control

 MIPS unconditional branch instructions:

j label

 Example:

if (il=3) beq $s4, $s5, Labl
h=1+7; add $s3, $s4, $s5
else j Lab2
h=1-7; Labl: sub $s3, $s4, $s5
Lab?2:

while (i != j)

- Can you build a simple for loop? i 4=1

So far:

Instruction Meaning

add $s1,%$s2,$s3 $s1 = $s2 + $s3

sub $s1,%$s2,$s3 $s1 = $s2 - $s3

lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,L Jump to L if $s4 = $s5
beq $s4,%$s5,L Jump to L if $s4 = $s5
j L Next instr. is at L

e Formats:

op | rs rt | rd |shamt|funct

op | rs rt 16 bit address
op 26 b1t address

Control Flow

We have: begq, bne

* what about Branch-1if-less-than?

New instruction:

if $s1 < $s2 then
$t0 = 1

else
$t0 = @

slt $t0, $s1, $s2 —»

Similarly, the constant version: s1ti $t0@, $s1, 10
Also, can compare with register $z0

How to implement blt (branch-if-less-than)?

Assembly Language vs. Machine Language

Assembly provides convenient symbolic representation
— much easier than writing down numbers
— e.g., destination first

Machine language is the underlying reality
— e.g., destination is no longer first

Assembly can provide 'pseudoinstructions’

* e.g., “move $t0, $t1” exists only in Assembly

« would be implemented using “add $t0,%$t1,$zero”

When considering performance you should count real instructions

Supporting Functions (procedures)

What is needed?

e Functions: Analogy of a spy
e secret plan, acquire resources, perform task, cover tracks, return with result
e Program has to

place params for function’s access
transfer control to procedure

acquire storage resources for the function
perform function’s instructions

place result for calling program’s access

return control to point of origin

Using registers

® Registers are fast!

e $a@ - $a3: argument registers
e $v0-%v1: value registers

e $ra: return address register

Jump-Link and Program Counter

¢ Jump-and-link instruction
e jumps to addr, store next instruction’s addr in $ra: the return address
e jal ProcedureAddress

e Program Counter (P(C)

e address of current instruction
e ., jal stores PC + 4 to setup procedure return

e ., another instruction: jr $ra

* jumps to address in $ra

Setup for Executing Functions

Caller puts params in $a0 - $a3

Uses jal X to jump to callee procedure X
Callee performs its instructions

Places results in $v0 - $v1

Returns to caller by $jr $ra

