
Registers vs. Memory

Processor I/O

Control

Datapath

Memory

Input

Output

• Arithmetic instructions operands must be registers,
! — only 32 registers provided

• Each register: 32 bits = 4 bytes = 1 word

• Compiler associates variables with registers

• What about programs with lots of variables

Memory Organization

• Viewed as a large, single-dimension array, with an address.

• A memory address is an index into the array

• "Byte addressing" means that the index points to a byte of memory.

0

1

2

3

4

5

6

...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

Byte Addresses

• Since 8-bit bytes are so useful, most architectures address individual bytes in
memory

• MIPS: memory address of a word must be multiple of 4 (alignment restriction)

• Big Endian:" leftmost byte is word address

 IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

• Little Endian:" rightmost byte is word address

Intel 80x86, DEC Vax, DEC Alpha (Windows NT)

msb lsb

3 2 1 0

little endian byte 0

0 1 2 3

big endian byte 0

Instructions: a simple example

• A C statement

• f, g, h, i, j are assigned to $s0, $s1, $s2, $s3, $s4

f = (g +h) - (i + j)

add $t0, $s1, $s2

add $t1, $s3, $s4

sub $s0, $t0, $t1

11

Load and store instructions

• Load and store instructions

• lw $tn, c_off($S_base)

• sw $tn, c_off($S_base)

• Example:

! C code:!! g = h + A[8];

! MIPS code:! lw $t0, 32($s3)
 add $s1, $s2, $t0

• Spilling registers

• doubly slow

g : $s1
h : $s2
base address of A : $s3

$tn : destination register
$S_base : register with base address
c_off : offset from base

Load and store instructions

• Example:

! C code:!! A[12] = h + A[8];

!

• Store word has destination last

• Remember: arithmetic operands are registers, not memory!

! Can’t write: !add 48($s3), $s2, 32($s3)

MIPS code:! lw $t0, 32($s3)
 add $t0, $s2, $t0
 sw $t0, 48($s3)

13

So far we’ve learned:

• MIPS
! — loading words but addressing bytes
! — arithmetic on registers only

• Instruction! ! ! Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]
sw $s1, 100($s2) Memory[$s2+100] = $s1

Constants

• To use a constant, have to use memory, just like for variables

• Example: add 4 to register $s3

• Quick add instruction: addi

• Design principle: make the common case fast

lw $t0, AddrConstant4($s1) # t0 is the constant 4

 add $s3, $s3, $t0

addi $s3, $s3, 4

15

• Instructions, like registers and words of data, are also 32 bits long

– Example: add $t0, $s1, $s2

– registers must have numbers (why?) $t0=8, $s1=17, $s2=18

• Instruction Format:

! 000000 10001 10010! 01000! 00000! 100000

! op! rs! rt! rd! shamt! funct

Representing Instructions in the Computer
Machine Language

op 6-bits opcode that specifies the operation

rs 5-bits register file address of the first source operand

rt 5-bits register file address of the second source operand

rd 5-bits register file address of the result’s destination

shamt 5-bits shift amount (for shift instructions)

funct 6-bits function code augmenting the opcode

0 17 18 8 0 32

Aside: MIPS Register Convention

Name
Register

Number
Usage

Preserve on

call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

17

• What if an instruction needs longer fields

• e.g.: in lw, address of constant may be more than 32 (25)

• conflict: keep instruction length same vs. have a single instruction format

• New principle: Good design demands a compromise

• Here: different formats for different instructions (keep length same)

• Introduce a new type of instruction format

– I-format for data transfer instructions and immediate instructions

– other format was R-format for register

• Example: lw $t0, 32($s3)

! 35! 19! 9! 32

! op! rs! rt! 16 bit number

Machine Language

18

• Instructions are bits

• Programs are stored in memory
! — to be read or written just like data

• Fetch & Execute Cycle

– Instructions are fetched and put into a special register

– Bits in the register "control" the subsequent actions

– Fetch the “next” instruction and continue

Memory

memory for data, programs,

 compilers, editors, etc.

Stored Program Concept

Processor

