
Addressing 32-bit addresses and constants

Till now, only 16 bits have been addressed or used for specifying a constant.
Often, more than the 16-bit field is needed.

32-bit Immediate Operands

How can we do a, say, addi operation with the constant being more than 216
(65536)?
We set a register to this constant, and do the add operation instead of addi.

lui loads the 16 bits of the constant into the high bits of a register:

!, to load 4000000 in register $s0

4000000dec = 0000 0000 0011 1101 0000 1001 0000 0000binary

We load the higher 16 bits in $s0!s higher 16:
lui $s0, 61 # 0000 0000 0011 1101binary = 61decimal

Contents of register $s2 after above:
0000 0000 0011 1101 0000 0000 0000 0000

Then, OR s2 to get the lower bits in:
ori $s2, 2304 # or with 2304decimal = 0000 1001 0000 0000binary

So now the operand is converted into a register by transfering it to one. ! now the

reg. version can be used.
" So if we wanted to do an addi $s0, $t0, 66000, we can first load 66000 in a
reg., say. $s2 by using the operations above, and then do add $s0, $t0, $s2.

32-bit addresses (in jump and branches)

Jump to address allows for 26-bit addresses (jump to register of course allows for 32-bit
addresses), which is pretty decent.

Therefore, j 10000 # go to location 10000
will be encoded as:

2 10000

6 bits 26 bits

However, for branches, we only have 16 bits for addresses:
Therefore, bne $s0, $s1, Exit # Exit if s0 ! s1

will be encoded as:

5 16 17 Exit

6 bits 5 bits 5 bits 16 bits

16 bits is not much at all, since we then can!t have a program bigger than 216 bytes
(may want to branch to a procedure stored at a very large addr. or may be the program
is huge already, say PC holds 68K, ! even a branch to two instructions ahead will be

too big unless we use relative addressing). In any case, being able to branch to
addresses less than 216 is unrealistic.

What if, we can add these 16 bits to another register? Then actual address = 216 + 232

which allows us to have address of length 232.
Therefore, PC = branch add. + the register value

Which register? Usually jumps and branches are taken as part of loops and if()
statements, so will be close to the PC.
What if we consider the beanch add. as an offset from the current instruction?
Then PC can serve as the register.
!, we can address ±215 (2 * 215 = 216 since we are doing both directions) words from the

current instruction. Actually, the hardware increments PC quickly, so the relative address
is not from current instruction, but from next instruction (PC + 4).
This is called PC–relative addressing.

Important: Usually the address in instructions is the address of a byte. For e.g., in lw
$s2, 2000, we want the word starting from the byte 2000 to be loaded. However, in
relative addressing as above, the offset is in terms of no. of words from next
instructions. So in beq $s1, $s2, 64, we want to jump 64 words away from next
instruction, ! 64*4 bytes away.

Similarly, both the 26-bit address in jump and jump-and-link instructions is for a
word and to get to the actual address, we will have to multiply it by 4 to get an actual
28-bit byte address.

