
Floating Point

Real numbers

3.14159 (π)

0.00000000001(1.0 × 10−9)
2.71828 (e)

Floating numbers: position of binary point is not fixed. Just like
float in C.
vs. “fixed-point” systems
Scientific notation

Normalized⇒ no leading 0

Exponent⇒ no. of positions to move the point in the fraction
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Advantages of Normalized Scientific Notation

Simplifies exchange of floating point data
Simplifies arithmetic
Increases accuracy: unnecessary leading 0’s are replaced by real
numbers on the right
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Binary Floating Numbers

Binary point (analogous to decimal point)

1.101two × 2−4

In general
1.xxxxxxxtwo × 2yyyy

Why 1 in fraction?
(Will use exponent in decimal for simplicity)
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Binary Floating Numbers

In design: compromise between sizes of fraction and exponent
between precision and range
since fixed word size

Represent in (floating) binary word as:

(−1)S × F × 2E

S (sign bit): 1 bit (31st bit)
E (exponent): 8 bits (bits 23 to 30)
F (significand, fraction): 23 bits (bits 0 to 22) literal storage
Not just MIPS formats: IEEE 754 floating-point standard
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Overflow & Underflow

Range: 2.0ten × 10−38 to 2.0ten × 1038

Overflow: Too large to represent
exponent too large to fit in 8 bits

Underflow: Too accurate to represent
Negative exponent too large to fit
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double format

double-precision floating-point

vs. single-precision
Uses two MIPS words

S: 31st bit of 1st register
E: bits 30 to 20 of 1st register
F: rest 20 bits of 1st register + 32 bits of 2nd

Increased range:
2.0ten × 10−308 to 2.0ten × 10308
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Another Optimization

Normalized⇒Make leading 1-bit implicit

∴ 24 bits for significand
53 bits for double-precision

Also use biased notation for exponent instead of two’s complement
Why?

∴, Exponent1 = Actual + 127
Bias 1023 for double precision
0000 0000 is for 0
1111 1111 is for infinity (could be negative or positive)

1as represented in the word
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IEEE 754 Representation

Final representation:

(−1)S × (1 + F) × 2(E−127)
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MIPS Instruction support for floating point numbers

To load into memory (.data section)
.float number1
.double number2

Floating-point registers:
$f0, $f1, $f2, ...
Use couples for double

To load & store from memory
lwc1 $f0, 0($t1) or lwc1 $f0, num var
swc1$f2, 0($t2)

For arithmetic (single precision)
add.s, sub.s, mul.s, div.s
add.d, sub.d, mul.d, div.d
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