Chapter 4 — Design

May 13, 2009

Chapter 4 — Design



Introduction
Outline

@ Introduction

Chapter 4 — Design 2/72



Introduction
Introduction

o Logical organization of software

Chapter 4 — Design 3/72



Introduction
Introduction

o Logical organization of software
o UML model

Chapter 4 — Design 3/72



Introduction
Introduction

o Logical organization of software

o UML model
o sketches, drawings, notes

Chapter 4 — Design 3/72



Introduction
Introduction

o Logical organization of software

o UML model
o sketches, drawings, notes

@ creative process: no real “method”

Chapter 4 — Design 3/72



Introduction

Introduction

o Logical organization of software

o UML model
o sketches, drawings, notes

@ creative process: no real “method”

@ learn from previous design experiences
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In This Chapter

@ Learn about software design perspectives and ideas
@ Architecture: abstract formulas and patterns

@ Specific Issues: common to most software designs

o object-oriented design
o user-interface design
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Introduction

@ System is composed of sub-systems
@ Architectural Design:

o identify sub-systems
o framework for sub-system control and communication

o affects performance, robustness, availability, maintainability
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Organization

@ Reflects basic strategy for the structure
e Common organization styles:

e repository
e client-server
o layered
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Repository Model

o If large amounts of data: central, shared repository or DB
e otherwise: DBs for each subsystem
@ Advantages / Disadvantages:

o efficient for sharing (all sub-systems must agree on data model)
e backup, security, access control are centralized (agreement)
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Client-Server Architecture Model

System as a set of services

Components:
o servers: offer services.
e e.g., web, print, file, compile
o clients: consumer services
o network: connects the two
@ not always necessary if not distributed
@ Clients must know name, services of available servers
e e.g., DNS
@ not vice-versa

Clients access services using RPC with a request-reply protocol
e e.g., http protocol for WWW

Client waits for a reply
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Client-Server Achitecture Model

@ E.g.: Video and Photo Library system’s architecture
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Client-Server Achitecture Model

o Advantages:

o Distributed architecture: processing, storage
o make changes transparently

@ Best used if using shared data model

o otherwise may need to translate for each sub-system
o XML can be used, but slow
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Layered Architecture Model

@ Organize sub-systems in layers

@ Also “abstract machine model”

@ Each layer = an abstract machine

o Contrast this with client-server model
@ hierarchy vs. network

o Advantages:

e supports incremental development
o localize machine dependence in lower layers

e Disadvantages:

e may have to “punch through” from top to bottom
e performance may suffer
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Layered Architecture Model

Configuration management system layer I

Object management system layer I

Database system layer I

Operating system layer

Figure: Version Control System
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System Organization Distributed Systems Architecture

Reference architectures

@ Represents architecture for a particular domain

o several systems will share the architecture
o Can be resued

@ Not for direct implementation

e communicate domain concepts
e evaluate possible architectures
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Example Reference Architecture

7 Application Ppplication
6 Presentaion Presentaion
5 Session Session

4 Fansport Fansport

3 Network Network Network

2 Data link Data link Data link

1 Physical Physical Physical

Communications medium

Figure: The OSI Reference Architecture for Computer Networks
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Introduction

@ Information processing is distributed over several computers
@ Advantages:

Resource sharing

Openness

Concurrency

Scalability

o Fault Tolerance

e Disadvantages:
Complexity
Security
Manageability
Unpredictability
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Multi-processor Architecture

Sensor Traffic flow Taffic light control
processor processor ‘ocessor

| :

Traffic lights
Traffic flow sensors and
cameras Operator consoles

000| [000
EE

VI
A

Figure: A multiprocessor traffic control system
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Client- Server Architecture (CSA)

Difference between server process and server computer
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CSA Example

]

Server proces

Q

Client process

Figure: A client-server system
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CSA‘ Exafnple

]

Server
computer

O

Client
computer
c10,ch, c®B

Figure: Computers in a client-server network
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How to CSA-ize Your System

Distribute some/all of the MVC layers

Presentation layer

Application processing
layer

Data management
layer
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Two-tier CSA

@ Simplest CSA: a server(s) and clients
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Two-tier CSA

@ Simplest CSA: a server(s) and clients
@ Thin and flat client models

Presentation

Thin-client

Data management
model

Application processini

Client - T

Presentation
Application processing

Fat-client

model Data management
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Three-tier CSA

@ Each MVC layer on a separate computer

Presentation

Server Server
Application Data
processing management
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Architectural on Distributed Systems Architecture

Other Dlstr1buted Archltectures

@ Peer-to-peer
o centralized
o semi-centralized
@ Service-oriented Architecture (e.g., web services)

e web beyond browsers

o standards (based on XML)
e SOAP
e WSDL
e UDDI
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Application Architectures

Introduction

@ Look at system architecture from application’s perspective
e previous perspective: control, distribution, structure

@ Issues to common to applications of a certain kind
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Application Architectures

Use of AA

o As s/w developer, AAs are useful as
e starting point for design process

design checklist

organize team-specific work

assessing components for reuse
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@ Batch-processing of data

e input and output: sizable databases / data stores

System

| Input

‘ Process

Output

T

¥

Database

Printer

Figure: Model of data-processing applications
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@ Batch-processing of data
e input and output: sizable databases / data stores

System

| Input ‘ Process Output

1 ¥

‘ Database

Printer

Figure: Model of data-processing applications

@ Do not need to save state across transactions
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Data-Processing Systems

@ Batch-processing of data
e input and output: sizable databases / data stores

System

| Input ‘ Process Output

1 ¥

‘ Database

Printer

Figure: Model of data-processing applications

@ Do not need to save state across transactions
e ., function-oriented rather than OO
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Application Architectures

Types of AAs
Data-Flow Diagrams

@ DFDs are useful to describe data-processing applications

Tax deduction + SS
Employee
records

number + tax office
Monthly pay
rates
Decoded . =:
ead employe: employee \alid
record record employee record

Validate
employee dataf

y

Write tax

Tax
transactions

transactions

Pension data I‘

Pension
deduction +
SS number

Compute
salary

Pay information T
Tax
tables

Social security
deduction + SS number

. Empoyee dat
+ deductions

Read monthiyy,
pay data

PRINTER
Net payment + bank
account info.

Write bank
transaction

Write social
security data,

Monthly pay
data

Bank
transactions

Social security
data

Figure: DFD for a payroll system
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@ Process user requests for DB read / update

@ Could be event-driven (interactive) or procedural
(non-interactive)

o E.g.: medical records software, ATM
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Transaction-Processing Systems

@ Process user requests for DB read / update

@ Could be event-driven (interactive) or procedural
(non-interactive)

o E.g.: medical records software, ATM

’ User inteface

’ User communications

’ Information retrieval and modification

Tansaction management
Database

Figure: Layered architecture of a transaction processing system
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Event Processing Systems

@ Respond to user or system events
e e.g. of such events?

File System
Save
Open
Ancillary data Editor data
—
Ancillary T Editing
commands commands
Command
Display
Interpret
Update .[
Ewvent
Process
Screen
Refresh | —]

Figure: Architecture of Event-driven system
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Introduction

Object-oriented system: interacting objects that maintain their own
state and provide operations on those states

Object-oriented design: system designing with object classes and
with relationships between these classes

@ classes are related to problem
@ state representation is private

@ system is easy to modify — objects (classes) since they are
independent

@ objects are reusable
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Objects and classes

@ Object: entity(state, operations}
@ state provides object information
@ operations provide services to other objects

@ Objects created from a class: definition of template
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An Employee object class (UML)

Employee

name: string

address: string

dateOfBith: Date
employeeNo: integer
socialSecurityNo: string
department: Dept

manager: Employee

salary: integer

status: {current, left, retired}
taxCode: integer

join ()

leave ()

retire ()
changeDetails ()
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Object-Orieni Object-Oriented Design Process

Example Class Hierarchy (Generalization)

Employee

/ \
[ |
Manager Programmer
budgetsControlled project
dateAppointed proglanguages
Project Dept. Strateir
Manager Manager Manager
projects dept responsibilities
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Association Model

Object-Orieni Object-Oriented Design Process

Employee

is-member-of

is-managed-by

manages

Department
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Concurrent Objects

@ Objects execute concurrently
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Concurrent Objects

@ Objects execute concurrently
e However, service requests are procedural
@ Threads allow for full concurrency even with service requests
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@ Object-Oriented Design
@ Object-Oriented Design Process
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The Process

@ Steps in the process:
Understand context and use
Design system architecture
Identify main objects
Design system models
Specify object interfaces
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The Process

@ Steps in the process:
Understand context and use
Design system architecture
Identify main objects
Design system models
Specify object interfaces

@ Usually an iterative, interleaved process
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Example: a weather mapping system

Chapter 4 — Design



Object-Orien!  Object-Oriented Design Process

Basics

@ System description

o generates weather maps from data collected from several sources
o collect and integrate data into an archive
e use archive and digitized map to display/print weather map
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Use Case and Context

o Context: how the system is connected in its environment

@ Use case: ways in which system can be used
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Use-cases for weather station

Calibrate
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Compltete System Architecture

@ Layered architecture: each step only depends on previous step

Data display layer where objects are
concerned with preparing and

«subsystem» presentm? the data in a human-
0

Data display readable
- = >
Data archiving layer where objects
«subsystem» are concerned with storing the data
Data archiving for future processing
1 Data processing Iaﬁer where objects
«subsystems are concerned with checking and

Data processing integrating the collected data

Data collection layer where objects
are concerned with acquiring data

«subsystem»
from remote sources

Data collection
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Subsystems in the Architecture

«subsystems»
Data collection «subsystem»
Data display
= =
User Map
interface display
o M
Weather — lap
station Map | printer
«subsystems asubsystemm»
Data processing Data archiving
==
=] —1 Data
Data Data storage
checking integation
|Map store | Data store
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System Architecture of Weather Station

@ Decomposing the system
@ Weather Station architecture:

Weather station
:I—‘ Manages all
«subsystem» external

Interface communications

subsystems Colsta ond
Data collection
weather data
«subsystem»  Package of
instruments for raw

Tetiuments data collections
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o Figure out what objects (classes) for each system/susbsystem
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Object Identification

o Figure out what objects (classes) for each system/susbsystem
@ Use application domain knowledge for attributes and services

o For the weather station subsystem:

WeatherStation WeatherData
identifier airlempemtures
oundemperatures
reportVieather () gindSpeedg
calibrate (instruments) : -
test () windDirections
startup (instruments) z;sg:fres
shutdown (instruments)
collect ()

Ground
thermome®er

temperature

test ()
calibrate ()

summarise ()

Anemometer Barometer
windSpeed pressure
windDirection height
test () test ()

calibmte ()
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Design Models

Graphical model of system to be implemented

Helps you to program your classes later

Bridge between requirements and implementation
e can create conflicts for level of detail

create several models with varying detail

or choose certain level of detail in single model
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Static and Dynamic models

@ Static Models
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Static and Dynamic models

@ Static Models
o describe system structure with classes and relationships
o relationships: generalization, used/used-by, composition

o Dynamic Models

e show interactions between system objects (not classes)
o service requests, state chages
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UML for Modeling

@ 12 types of graphical models to document the static and dynamic
system design
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UML for Modeling

@ 12 types of graphical models to document the static and dynamic
system design

@ Subsystem models: show logical grouping of classes in
sub-systems

e show as packages
e static models

@ Sequence models: show sequence of object interactions

o UML sequence or collaboration diagram.
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UML for Modeling

@ 12 types of graphical models to document the static and dynamic
system design

@ Subsystem models: show logical grouping of classes in
sub-systems
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UML for Modeling

12 types of graphical models to document the static and dynamic
system design

Subsystem models: show logical grouping of classes in
sub-systems

e show as packages

o static models

Sequence models: show sequence of object interactions
o UML sequence or collaboration diagram.
e dynamic models
o State machine models: show state changes for individual objects
e events and responses
o state chart diagrams
e dynamic models
@ Other model types in UML: use case, object models, generalization,
etc.
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Subsystem Models

@ Objects in weather station package:
«subsystem» «subsystem»
Interface Data collection
«subsystem»
Instruments
Air N
thermometer| RainGauge Anemometer

‘ WindVane

WeatherData

Tnstrument
Status

Barometer

roun
thermometer

Figure: Weather station packages
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@ simple associations as well
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Object-Orient ct-Oriented Design Process

Subsystem Models

@ simple associations as well
@ sub-system model + class model = describe logical grouping
@ usually relate to Java packages/libraries
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Sequence Diagrams

@ Document interactions

@ For each interaction: sequence of object interactions

% |:CommsControIIer| | :WeatherStatior1 | :WeatherData |
request (repar)
P ——

acknowledge ()
repott ()

summarise ()

send (repot)
reply (repot) T
- H

acknowledge ()
—_—

Figure: Sequence of operations in data collection
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Sequence Diagrams

@ Objects shown horizontally, time vertically
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Sequence Diagrams

@ Objects shown horizontally, time vertically
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e represent messages
o not data flows

@ thin rectangles: when the object is the controlling object

e in a hierarchy, control is not relinquished until original object is
replied to
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Sequence Diagrams

@ Objects shown horizontally, time vertically
@ Labeled arrows show atomic interactions between objects

e represent messages
o not data flows

@ thin rectangles: when the object is the controlling object

e in a hierarchy, control is not relinquished until original object is
replied to

@ Sequence Diagrams also for single objects
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State Diagrams

e For important objects: show their lifetimes and event responses
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State Diagrams

e For important objects: show their lifetimes and event responses

Operation calibrate () Calbrating
Calibration OK

test
(" waiting st Testing

transmission done test complete

statup ()

"4

Transmitting
collection
done

clock

weather summary
complete

Collecting

Figure: State diagram for weather station
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State Diagrams

e For important objects: show their lifetimes and event responses

Operation calibrate () Calibrating

calibration OK
test
(" vaiting © Testing

transmission done test complete

statup ()

"4

Transmitting
V4

clock | | collection
done

weather summary
complete

Collecting

Figure: State diagram for weather station

o States can be helpful when implementing the class
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Object-Interface Specification

@ Only the interface

e not implementation or data items
e no internal details (private methos etc.)

@ helps concurrent development
@ more maintainable than full specification of classes

@ Two approaches:

o each interface is a class in Java
o declare interfaces separately from classes

@ use interface and let classes implement an interface

@ Simply use Java (or another OO PL) to define interfaces
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Design Evolution

@ OO approach allows for easy changes to design

o state representation does not affect interface
o objects are loosely coupled = easy to introduce new ones

o E.g.: add pollution-monitoring to weather station

e introduce Air quality class at Weather Data level
o add reportAirQuality() operation to WeatherStation
e add classes for pollution monitoring

Chapter 4 — Design 61/72
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Introduction

@ “Design interface with user’s experience and interaction in
mind”

o Field of Human Computer Interaction

o Examples:

o Command line interface

o XHTML/CSS

e Swing

o sometimes combined with hardware design

@ Software developer == Interface designer
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Introduction

@ Good user experience is crucial to product success

@ User errors are often a result of bad interface design

The Design of
Everyday Things

Donald A. Norman
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e frustration

o inaccessible / difficult to use features

o mistakes

@ Some (random) guides:

o make user interaction simple and efficient (Quicksilver, TaDa List,
Ubiquity, !gpsGuide, [Password-engine)

e balance meaning with action (icons in any app, Reason, !Office
2010)
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Introduction

@ Bad interface leads to

o frustration

o inaccessible / difficult to use features

o mistakes

@ Some (random) guides:

o make user interaction simple and efficient (Quicksilver, TaDa List,
Ubiquity, !gpsGuide, [Password-engine)

e balance meaning with action (icons in any app, Reason, !Office
2010)

e understand and aid human memory (!16tone, !SonicMood)

o don't terrorize user with errors (http://adobegripes.tumblr.com)

o work with user’s capabilities (accessibility, Frenzic, Mac toolbar,
!Any (old) Linux GUI interface)
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Formal principles

o User familiarity
o Consistency

@ Minimal surprise
@ Recoverability

o User guidance

o User diversity
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Issues of Interface Design

Answer two questions:
e How should user interact with system?
@ How should information be presented to user?
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@ Advanced from interfaces designed for experts
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o direct manipulation
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Comaprisons of Interface Styles

Interaction
style

Direct
manipulation

Menu
selection

Form fill-in

Command
language

Natural
language

Main advantages

Fast and intuitive

interaction
Easy to learn

Avoids user error
Little typing required

Simple data entry
Easy to leam
Checkable

Powerful and flexible

Accessible to casual

¢ extended

Main disadvantages

May be hard to implement
Only suitable where there is a
visual metaphor for tasks and
objects.

Slow for experienced users.
Can become complex if many
menu options.

Takes up a lot of screen space
Causes problems where user
options do not match the form
ficlds

Hard to learn.
Poor error management.

Requires more typing.
Natural language understanding
systems are unreliable.

Application
examples

Video games
CAD systems

Most general-
PUTPOSE Systems

Stock control,
Personal loan
processing

Operating systems,
Command and
control systems

Information
retrieval systems

Figure: Interaction Styles Merits/Demerits
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Interaction Issues

o single application may have mixed styles
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Interaction Issues

o single application may have mixed styles
e e.g., Linux: direct manipulation, menu selection, command
language
@ Web interfaces

o mostly forms based
e direct manipulation ?
o command language ?
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Information Presentation

@ Use the MVC approach for focusing on Ul
@ Kinds of presentation elements depend on many factors:
e precise vs relationships (tables/text/graphs, sparklines)
o speed of change in values (tables/graphs, animation)
@ Visualizations for large, changing, interactive data
o molecule models, network graphs
@ Color usage:
o few (4-5)
e system change == color change
o display anomalies, similarities
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Information Presentation

@ Use the MVC approach for focusing on Ul

@ Kinds of presentation elements depend on many factors:
e precise vs relationships (tables/text/graphs, sparklines)
o speed of change in values (tables/graphs, animation)

@ Visualizations for large, changing, interactive data
o molecule models, network graphs

@ Color usage:
o few (4-5)

system change == color change

display anomalies, similarities

consistency

eye strain (red-on-blue)
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UI Design Process

@ 3-step process
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UI Design Process

@ 3-step process

Analyse and
understand
user activit\e

Produce paper-}
based design
prototype

Design
prototype ’
J

Produce
dynamic design
prototype

final user

intefface
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UI Design Process

@ 3-step process

Analyse and
understand
user activit\e

Produce paper-}
based design
prototype

Design
prototype ’
J

Evaluate design
with end-users JJ
> 4

Produce \
dynamic design
prototype  J)

Evaluate design
with end-users J§j
——
/ /
Executable n_._ Ims;??:::
prototype nterface
| 5 /

@ User analysis, System prototyping, Interface evaluation
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