Chapter 4 — Design

May 13, 2009

Chapter 4 — Design

Introduction
Outline

@ Introduction

Chapter 4 — Design 2/72

Introduction
Introduction

o Logical organization of software

Chapter 4 — Design 3/72

Introduction
Introduction

o Logical organization of software
o UML model

Chapter 4 — Design 3/72

Introduction
Introduction

o Logical organization of software

o UML model
o sketches, drawings, notes

Chapter 4 — Design 3/72

Introduction
Introduction

o Logical organization of software

o UML model
o sketches, drawings, notes

@ creative process: no real “method”

Chapter 4 — Design 3/72

Introduction

Introduction

o Logical organization of software

o UML model
o sketches, drawings, notes

@ creative process: no real “method”

@ learn from previous design experiences

In This Chapter

@ Learn about software design perspectives and ideas

Chapter 4 — Design 4/72

In This Chapter

@ Learn about software design perspectives and ideas
@ Architecture: abstract formulas and patterns

Chapter 4 — Design 4/72

In This Chapter

@ Learn about software design perspectives and ideas
@ Architecture: abstract formulas and patterns
@ Specific Issues: common to most software designs

Chapter 4 — Design 4/72

In This Chapter

@ Learn about software design perspectives and ideas
@ Architecture: abstract formulas and patterns

@ Specific Issues: common to most software designs

o object-oriented design
o user-interface design

Chapter 4 — Design 4/72

ectural D System Organization Distributed Systems Architecture

Outline

@ Architectural Design
@ System Organization
@ Distributed Systems Architecture

Chapter 4 — Design 5/72

System Organization Distributed Systems Architecture

Introduction

@ System is composed of sub-systems

Chapter 4 — Design 6/72

System Organization Distributed Systems Architecture

Introduction

@ System is composed of sub-systems
@ Architectural Design:

o identify sub-systems
o framework for sub-system control and communication

Chapter 4 — Design 6/72

Architectural ; tion Distributed Systems Architecture

Introduction

@ System is composed of sub-systems
@ Architectural Design:

o identify sub-systems
o framework for sub-system control and communication

o affects performance, robustness, availability, maintainability

Chapter 4 — Design 6/72

ectural D System Organization Distributed Systems Architecture

Outline

@ Architectural Design
@ System Organization
@ Distributed Systems Architecture

Chapter 4 — Design 7/72

Architectural Design System Organization Distributed Systems Architecture

Organization

@ Reflects basic strategy for the structure

Chapter 4 — Design 8/72

Architectural Design System Organization Distributed Systems Architecture

Organization

@ Reflects basic strategy for the structure
e Common organization styles:

e repository
e client-server
o layered

Chapter 4 — Design 8/72

ectural D System Organization Distributed Systems Architecture

Repository Model

o If large amounts of data: central, shared repository or DB

Chapter 4 — Design 9/72

ectural D System Organization Distributed Systems Architecture

Repository Model

o If large amounts of data: central, shared repository or DB
e otherwise: DBs for each subsystem

Chapter 4 — Design 9/72

Architectural System Organization Distributed Systems Architecture

Repository Model

o If large amounts of data: central, shared repository or DB
e otherwise: DBs for each subsystem
@ Advantages / Disadvantages:

9/72

on Distr

Repository Model

o If large amounts of data: central, shared repository or DB
e otherwise: DBs for each subsystem
@ Advantages / Disadvantages:
o efficient for sharing (all sub-systems must agree on data model)

Chapter 4 — Design 9/72

on Distr

Repository Model

o If large amounts of data: central, shared repository or DB
e otherwise: DBs for each subsystem
@ Advantages / Disadvantages:

o efficient for sharing (all sub-systems must agree on data model)
e backup, security, access control are centralized (agreement)

Chapter 4 — Design 9/72

Architectural System Organization Distributed Systems Architecture

Client- Server Architecture Model

@ System as a set of services

Chapter 4 — Design 10/72

System Organization Distribut

Chent Server Architecture Model

@ System as a set of services
e Components:

Chapter 4 — Design 10/72

System Organization Distributed Systems Architecture

Client- Server Architecture Model

@ System as a set of services

e Components:
e servers: offer services.

Chapter 4 — Design 10/72

System Organization Distributed Systems Architecture

Client- Server Architecture Model

@ System as a set of services

e Components:
o servers: offer services.
e e.g., web, print, file, compile

Chapter 4 — Design 10/72

Architectural Design System Organization Distributed Systems Architecture

Client-Server Architecture Model

@ System as a set of services

e Components:
o servers: offer services.
e e.g., web, print, file, compile

o clients: consumer services

Chapter 4 — Design 10/72

Architectural Design System Organization Distributed Systems Architecture

Client-Server Architecture Model

@ System as a set of services

e Components:
o servers: offer services.
e e.g., web, print, file, compile

o clients: consumer services
e network: connects the two

Chapter 4 — Design 10/72

System Organization Distributed Systems Architecture

Client- Server Architecture Model

@ System as a set of services
e Components:
e servers: offer services.
e e.g., web, print, file, compile

o clients: consumer services
e network: connects the two

@ not always necessary if not distributed

Chapter 4 — Design 10/72

System Organization Distributed Systems Architecture

Client- Server Architecture Model

@ System as a set of services

e Components:
o servers: offer services.
e e.g., web, print, file, compile

o clients: consumer services
e network: connects the two

@ not always necessary if not distributed

@ Clients must know name, services of available servers

Chapter 4 — Design 10/72

System Organization Distributed Systems Architecture

Client- Server Architecture Model

@ System as a set of services

e Components:
o servers: offer services.
e e.g., web, print, file, compile

o clients: consumer services
e network: connects the two

@ not always necessary if not distributed
@ Clients must know name, services of available servers
e e.g., DNS

Chapter 4 — Design 10/72

System Organization Distributed Systems Architecture

Client- Server Architecture Model

@ System as a set of services

e Components:
o servers: offer services.
e e.g., web, print, file, compile

o clients: consumer services
e network: connects the two

@ not always necessary if not distributed
@ Clients must know name, services of available servers
e e.g., DNS
@ not vice-versa

Chapter 4 — Design 10/72

Architectural System Organization Distributed Systems Architecture

Client- Server Architecture Model

@ System as a set of services

e Components:
o servers: offer services.
e e.g., web, print, file, compile

o clients: consumer services
e network: connects the two

@ not always necessary if not distributed
@ Clients must know name, services of available servers
e e.g., DNS
@ not vice-versa
o Clients access services using RPC with a request-reply protocol

Chapter 4 — Design 10/72

Architectural System Organization Distributed Systems Architecture

Client- Server Architecture Model

@ System as a set of services

e Components:
o servers: offer services.
e e.g., web, print, file, compile

o clients: consumer services
e network: connects the two

@ not always necessary if not distributed
@ Clients must know name, services of available servers
e e.g., DNS
@ not vice-versa
o Clients access services using RPC with a request-reply protocol
e e.g., http protocol for WWW

Chapter 4 — Design 10/72

Architectural Design System Organization Distributed Systems Architecture

Client-Server Architecture Model

System as a set of services

Components:
o servers: offer services.
e e.g., web, print, file, compile
o clients: consumer services
o network: connects the two
@ not always necessary if not distributed
@ Clients must know name, services of available servers
e e.g., DNS
@ not vice-versa

Clients access services using RPC with a request-reply protocol
e e.g., http protocol for WWW

Client waits for a reply

Chapter 4 — Design 10/72

Architectural D System Organization Distributed ¢ ns Architecture

Client-Server Achitecture Model

@ E.g.: Video and Photo Library system’s architecture

= o o

\ \ ! \
| Internet I

v

\J \J v
Catalague Video Pictue
sener sener sener Web serer

Library Film clip Digitised Film and
catalague files photagraphs phato info.

Chapter 4 — Design 11/72

Architectural Design System Organization Distributed Systems Architecture

Client-Server Achitecture Model

o Advantages:

Chapter 4 — Design

System Organization Distribut

Chent Server Achitecture Model

o Advantages:
o Distributed architecture: processing, storage

Chapter 4 — Design 12/72

m Org on Distr

Client-Server Achitecture Model

o Advantages:

o Distributed architecture: processing, storage
o make changes transparently

Chapter 4 — Design 12/72

System Organization Distribut

Chent Server Achitecture Model

o Advantages:

o Distributed architecture: processing, storage
o make changes transparently

@ Best used if using shared data model

Chapter 4 — Design 12/72

m Org on Distr

Client-Server Achitecture Model

o Advantages:

o Distributed architecture: processing, storage
o make changes transparently

@ Best used if using shared data model
o otherwise may need to translate for each sub-system

Chapter 4 — Design 12/72

m Org on Distr

Client-Server Achitecture Model

o Advantages:

o Distributed architecture: processing, storage
o make changes transparently

@ Best used if using shared data model

o otherwise may need to translate for each sub-system
o XML can be used, but slow

Chapter 4 — Design 12/72

Arch ra System Organization Distrib

Layered Architecture Model

@ Organize sub-systems in layers

Chapter 4 — Design 13/72

System Organization Distributed Systems Architecture

1

@ Organize sub-systems in layers

@ Also “abstract machine model”

Chapter 4 — Design 13/72

Architectural n System Organization Distributed Systems Architecture

Layered Architecture Model

@ Organize sub-systems in layers
o Also “abstract machine model”
@ Each layer = an abstract machine

Chapter 4 — Design

Architectural System Organization Distributed Systems Architecture

Layered Architecture Model

@ Organize sub-systems in layers

@ Also “abstract machine model”

@ Each layer = an abstract machine

o Contrast this with client-server model

Chapter 4 — Design 13/72

on Distr

Layered

@ Organize sub-systems in layers
o Also “abstract machine model”
@ Each layer = an abstract machine

@ Contrast this with client-server model
@ hierarchy vs. network

Chapter 4 — Design 13/72

Architectural System Organization Distributed Systems Architecture

Layered Architecture Model

@ Organize sub-systems in layers

@ Also “abstract machine model”

@ Each layer = an abstract machine

o Contrast this with client-server model
@ hierarchy vs. network

o Advantages:

Chapter 4 — Design 13/72

Arch ra System Organization Distrib

Layered Architecture Model

@ Organize sub-systems in layers

@ Also “abstract machine model”

@ Each layer = an abstract machine

o Contrast this with client-server model
@ hierarchy vs. network

o Advantages:
e supports incremental development

Chapter 4 — Design 13/72

Arch ra System Organization Distrib

Layered Architecture Model

@ Organize sub-systems in layers

@ Also “abstract machine model”

@ Each layer = an abstract machine

o Contrast this with client-server model
@ hierarchy vs. network

o Advantages:

e supports incremental development
o localize machine dependence in lower layers

Chapter 4 — Design 13/72

Arch ra System Organization Distrib

Layered Architecture Model

@ Organize sub-systems in layers

@ Also “abstract machine model”

@ Each layer = an abstract machine

o Contrast this with client-server model
@ hierarchy vs. network

o Advantages:

e supports incremental development
o localize machine dependence in lower layers

e Disadvantages:

Chapter 4 — Design 13/72

Arch ra System Organization Distrib

Layered Architecture Model

@ Organize sub-systems in layers

@ Also “abstract machine model”

@ Each layer = an abstract machine

o Contrast this with client-server model
@ hierarchy vs. network

o Advantages:

e supports incremental development
o localize machine dependence in lower layers

e Disadvantages:
e may have to “punch through” from top to bottom

Chapter 4 — Design 13/72

Arch ra System Organization Distrib

Layered Architecture Model

@ Organize sub-systems in layers

@ Also “abstract machine model”

@ Each layer = an abstract machine

o Contrast this with client-server model
@ hierarchy vs. network

o Advantages:

e supports incremental development
o localize machine dependence in lower layers

e Disadvantages:

e may have to “punch through” from top to bottom
e performance may suffer

Chapter 4 — Design 13/72

Layered Architecture Model

Configuration management system layer I

Object management system layer I

Database system layer I

Operating system layer

Figure: Version Control System

Chapter 4 — Design

Architectural Design System Organization Distributed Systems Architecture

Reference architectures

@ Represents architecture for a particular domain

Chapter 4 — Design 15/72

Architectural Design System Organization Distributed Systems Architecture

Reference architectures

@ Represents architecture for a particular domain
o several systems will share the architecture

Chapter 4 — Design 15/72

Architectural Design System Organization Distributed Systems Architecture

Reference architectures

@ Represents architecture for a particular domain

o several systems will share the architecture
o Can be resued

Chapter 4 — Design 15/72

Architectural System Organization Distributed Systems Architecture

Reference architectures

@ Represents architecture for a particular domain

o several systems will share the architecture
o Can be resued

@ Not for direct implementation

15/72

System Organization Distributed Systems Architecture

Reference architectures

@ Represents architecture for a particular domain

o several systems will share the architecture
o Can be resued

@ Not for direct implementation
e communicate domain concepts

Chapter 4 — Design 15/72
P 2]

System Organization Distributed Systems Architecture

Reference architectures

@ Represents architecture for a particular domain

o several systems will share the architecture
o Can be resued

@ Not for direct implementation

e communicate domain concepts
e evaluate possible architectures

Chapter 4 — Design 15/72
P 2]

Architectural Design ystem Organization Distributed Systems Architecture

Example Reference Architecture

7 Application Ppplication
6 Presentaion Presentaion
5 Session Session

4 Fansport Fansport

3 Network Network Network

2 Data link Data link Data link

1 Physical Physical Physical

Communications medium

Figure: The OSI Reference Architecture for Computer Networks

16/72

ectural D System Organization Distributed Systems Architecture

Outline

@ Architectural Design
@ System Organization
@ Distributed Systems Architecture

Chapter 4 — Design 17/72

Architectural Design System Organization Distributed Systems Architecture

Introduction

@ Information processing is distributed over several computers

Chapter 4 — Design 18/72

Architectural Design System Organization Distributed Systems Architecture

Introduction

@ Information processing is distributed over several computers
@ Advantages:

Chapter 4 — Design 18/72

Architectural Design System Organization Distributed Systems Architecture

Introduction

@ Information processing is distributed over several computers
@ Advantages:
o Resource sharing

Chapter 4 — Design 18/72

Architectural Design System Organization Distributed Systems Architecture

Introduction

@ Information processing is distributed over several computers
@ Advantages:

o Resource sharing
o Openness

Chapter 4 — Design 18/72

Architectural Design System Organization Distributed Systems Architecture

Introduction

@ Information processing is distributed over several computers
@ Advantages:

o Resource sharing
o Openness
e Concurrency

Chapter 4 — Design 18/72

Architectural Design System Organization Distributed Systems Architecture

Introduction

@ Information processing is distributed over several computers
@ Advantages:

Resource sharing

Openness

Concurrency
Scalability

Chapter 4 — Design 18/72

Architectural Design System Organization Distributed Systems Architecture

Introduction

@ Information processing is distributed over several computers
@ Advantages:

Resource sharing

Openness

Concurrency

Scalability

Fault Tolerance

Chapter 4 — Design 18/72

System Organization Distributed Systems Architecture

Introduction

@ Information processing is distributed over several computers
@ Advantages:

Resource sharing

Openness

Concurrency

Scalability

o Fault Tolerance

e Disadvantages:

Chapter 4 — Design 18/72

System Organization Distributed Systems Architecture

Introduction

@ Information processing is distributed over several computers
@ Advantages:

Resource sharing

Openness

Concurrency

Scalability

o Fault Tolerance

e Disadvantages:
o Complexity

Chapter 4 — Design 18/72

System Organization Distributed Systems Architecture

Introduction

@ Information processing is distributed over several computers
@ Advantages:

Resource sharing

Openness

Concurrency

Scalability

o Fault Tolerance

e Disadvantages:

o Complexity
e Security

Chapter 4 — Design 18/72

System Organization Distributed Systems Architecture

Introduction

@ Information processing is distributed over several computers
@ Advantages:

Resource sharing

Openness

Concurrency

Scalability

o Fault Tolerance

e Disadvantages:

o Complexity
e Security
e Manageability

Chapter 4 — Design 18/72

Architectural Design System Organization Distributed Systems Architecture

Introduction

@ Information processing is distributed over several computers
@ Advantages:

Resource sharing

Openness

Concurrency

Scalability

o Fault Tolerance

e Disadvantages:
Complexity
Security
Manageability
Unpredictability

Chapter 4 — Design 18/72

Architectural Design ition Distributed Systems Architecture

Multi-processor Architecture

Sensor Traffic flow Taffic light control
processor processor ‘ocessor

| :

Traffic lights
Traffic flow sensors and
cameras Operator consoles

000| [000
EE

VI
A

Figure: A multiprocessor traffic control system

Chapter 4

Architectural on Distributed Systems Architecture

Client- Server Architecture (CSA)

Difference between server process and server computer

Chapter 4 — Design 20/72

tectural Design System Organization Distributed Systems Architecture

CSA Example

]

Server proces

Q

Client process

Figure: A client-server system

21/72

System Organization Distributed Systems Architecture

CSA‘ Exafnple

]

Server
computer

O

Client
computer
c10,ch, c®B

Figure: Computers in a client-server network

Architectural Design tion Distributed Systems Architecture

How to CSA-ize Your System

Distribute some/all of the MVC layers

Presentation layer

Application processing
layer

Data management
layer

Chapter 4 — Design

System Organization Distributed Systems Architecture

Two-tier CSA

@ Simplest CSA: a server(s) and clients

Chapter 4 — Design 24/72

Architectural Design System Organization Distributed Systems Architecture

Two-tier CSA

@ Simplest CSA: a server(s) and clients
@ Thin and flat client models

Presentation

Thin-client

Data management
model

Application processini

Client - T

Presentation
Application processing

Fat-client

model Data management

Chapter 4 — De:

24/72

Architectural Design n Organization Distributed Systems Architecture

Three-tier CSA

@ Each MVC layer on a separate computer

Presentation

Server Server
Application Data
processing management

Chapter 4

Architectural Design System Organization Distributed Systems Architecture

Other Distributed Architectures

@ Peer-to-peer

Chapter 4 — Design

Architectural on Distributed Systems Architecture

Other Dlstr1buted Archltectures

@ Peer-to-peer
o centralized

Chapter 4 — Design 26/72

Sy Distributed Systems Architecture

Other Distributed Architectures

@ Peer-to-peer

o centralized
e semi-centralized

Chapter 4 — Design 26/72

Architectural y tion Distributed Systems Architecture

Other Dlstr1buted Archltectures

@ Peer-to-peer

o centralized
e semi-centralized

@ Service-oriented Architecture (e.g., web services)

26/72

Architectural Design System Organization Distributed Systems Architecture

Other Distributed Architectures

@ Peer-to-peer

o centralized
e semi-centralized

@ Service-oriented Architecture (e.g., web services)
e web beyond browsers

Chapter 4 — Design 26/72

Architectural on Distributed Systems Architecture

Other Dlstr1buted Archltectures

@ Peer-to-peer
o centralized
o semi-centralized
@ Service-oriented Architecture (e.g., web services)

e web beyond browsers

o standards (based on XML)
e SOAP
e WSDL
e UDDI

Chapter 4 — Design 26/72

Application Architectures

Outline

@ Application Architectures
o Types of AAs

Chapter 4 — Design 27/72

Application Architectures

Introduction

@ Look at system architecture from application’s perspective

Chapter 4 — Design 28/72

Application Architectures

Introduction

@ Look at system architecture from application’s perspective
e previous perspective: control, distribution, structure

Chapter 4 — Design 28/72

Application Architectures

Introduction

@ Look at system architecture from application’s perspective
e previous perspective: control, distribution, structure

@ Issues to common to applications of a certain kind

Chapter 4 — Design 28/72

Application Architectures

Use of AA

o As s/w developer, AAs are useful as
e starting point for design process

Chapter 4 — Design 29/72

Application Architectures

Use of AA

o As s/w developer, AAs are useful as

e starting point for design process
o design checklist

Chapter 4 — Design 29/72

Application Architectures

Use of AA

o As s/w developer, AAs are useful as

e starting point for design process
o design checklist
e organize team-specific work

Chapter 4 — Design 29/72

Application Architectures

Use of AA

o As s/w developer, AAs are useful as
e starting point for design process

design checklist

organize team-specific work

assessing components for reuse

Chapter 4 — Design 29/72

Application Architectures Types of AAs

Outline

@ Application Architectures
o Types of AAs

Chapter 4 — Design 30/72

Application Arch Types of AAs

Data-Processing Systems

@ Batch-processing of data

Chapter 4 — Design 31/72

Application Architectures Types of AAs

Data-Processing Systems

@ Batch-processing of data
e input and output: sizable databases / data stores

Chapter 4 — Design 31/72

Data-Processing Systems

@ Batch-processing of data

e input and output: sizable databases / data stores

System

| Input

‘ Process

Output

T

¥

Database

Printer

Figure: Model of data-processing applications

Chapter 4 — Design

31/72

Data-Processing Systems

@ Batch-processing of data
e input and output: sizable databases / data stores

System

| Input ‘ Process Output

1 ¥

‘ Database

Printer

Figure: Model of data-processing applications

@ Do not need to save state across transactions

Chapter 4 — Design 31/72

Data-Processing Systems

@ Batch-processing of data
e input and output: sizable databases / data stores

System

| Input ‘ Process Output

1 ¥

‘ Database

Printer

Figure: Model of data-processing applications

@ Do not need to save state across transactions
e ., function-oriented rather than OO

Chapter 4 — Design 31/72

Application Architectures

Types of AAs
Data-Flow Diagrams

@ DFDs are useful to describe data-processing applications

Tax deduction + SS
Employee
records

number + tax office
Monthly pay
rates
Decoded . =:
ead employe: employee \alid
record record employee record

Validate
employee dataf

y

Write tax

Tax
transactions

transactions

Pension data I‘

Pension
deduction +
SS number

Compute
salary

Pay information T
Tax
tables

Social security
deduction + SS number

. Empoyee dat
+ deductions

Read monthiyy,
pay data

PRINTER
Net payment + bank
account info.

Write bank
transaction

Write social
security data,

Monthly pay
data

Bank
transactions

Social security
data

Figure: DFD for a payroll system

Chapter 4 — Desi

/79

32/7

@ Process user requests for DB read / update

Chapter 4 — Design

@ Process user requests for DB read / update

@ Could be event-driven (interactive) or procedural
(non-interactive)

Chapter 4 — Design

@ Process user requests for DB read / update

@ Could be event-driven (interactive) or procedural
(non-interactive)

o E.g.: medical records software, ATM

Chapter 4 — Design

Application Architectures Types of AAs

Transaction-Processing Systems

@ Process user requests for DB read / update

@ Could be event-driven (interactive) or procedural
(non-interactive)

o E.g.: medical records software, ATM

’ User inteface

’ User communications

’ Information retrieval and modification

Tansaction management
Database

Figure: Layered architecture of a transaction processing system

Appli Architectures Types of AAs

Event Processing Systems

@ Respond to user or system events

Chapter 4 — Design 34/72

Appli Architectures Types of AAs

Event Processing Systems

@ Respond to user or system events
e e.g. of such events?

Chapter 4 — Design 34/72

Application Architectures Types of AAs

Event Processing Systems

@ Respond to user or system events
e e.g. of such events?

File System
Save
Open
Ancillary data Editor data
—
Ancillary T Editing
commands commands
Command
Display
Interpret
Update .[
Ewvent
Process
Screen
Refresh | —]

Figure: Architecture of Event-driven system

Chapter 4 — Design 34/72

Object-Orient Object-Oriented Design Process

Outline

@ Object-Oriented Design
@ Object-Oriented Design Process

Chapter 4 — Design 35/72

Object-Orient Object-Oriented D

Introduction

Object-oriented system: interacting objects that maintain their own
state and provide operations on those states

Chapter 4 — Design 36/72

Object-Orienf Object-Oriented Desig

Introduction

Object-oriented system: interacting objects that maintain their own
state and provide operations on those states

Object-oriented design: system designing with object classes and
with relationships between these classes

@ classes are related to problem

Chapter 4 — Design 36/72

Object-Orienf Object-Oriented Desig

Introduction

Object-oriented system: interacting objects that maintain their own
state and provide operations on those states

Object-oriented design: system designing with object classes and
with relationships between these classes

@ classes are related to problem

@ state representation is private

Chapter 4 — Design 36/72

Object-Orienf Object-Oriented Desig

Introduction

Object-oriented system: interacting objects that maintain their own
state and provide operations on those states

Object-oriented design: system designing with object classes and
with relationships between these classes

@ classes are related to problem
@ state representation is private

@ system is easy to modify — objects (classes) since they are
independent

@ objects are reusable

Chapter 4 — Design 36/72

Object-Orienf Object-Oriented Desig

Objects and classes

@ Object: entity(state, operations}

Chapter 4 — Design 37/72

Object-Orienf Object-Oriented Desig

Objects and classes

@ Object: entity(state, operations}
@ state provides object information

Chapter 4 — Design 37/72

Object-Orienf Object-Oriented Desig

Objects and classes

@ Object: entity(state, operations}
@ state provides object information
@ operations provide services to other objects

Chapter 4 — Design 37/72

Object-Orienf Object-Oriented Desig

Objects and classes

@ Object: entity(state, operations}
@ state provides object information
@ operations provide services to other objects

@ Objects created from a class: definition of template

Chapter 4 — Design 37/72

An Employee object class (UML)

Employee

name: string

address: string

dateOfBith: Date
employeeNo: integer
socialSecurityNo: string
department: Dept

manager: Employee

salary: integer

status: {current, left, retired}
taxCode: integer

join ()

leave ()

retire ()
changeDetails ()

Chapter 4 — Design

Object-Orieni Object-Oriented Design Process

Example Class Hierarchy (Generalization)

Employee

/ \
[|
Manager Programmer
budgetsControlled project
dateAppointed proglanguages
Project Dept. Strateir
Manager Manager Manager
projects dept responsibilities

Chapter 4 — Design 39/72

Association Model

Object-Orieni Object-Oriented Design Process

Employee

is-member-of

is-managed-by

manages

Department

Chapter 4 — De:

Manager

40/72

Object-Orient Object-Oriented D

Concurrent Objects

@ Objects execute concurrently

Chapter 4 — Design 41/72

Object-Orienf Object-Oriented Design Process

Concurrent Objects

@ Objects execute concurrently
e However, service requests are procedural

Chapter 4 — Design 41/72

Object-Orient Object-Oriented

Concurrent Objects

@ Objects execute concurrently
e However, service requests are procedural
@ Threads allow for full concurrency even with service requests

Chapter 4 — Design 41/72

Object-Orien! Object-Oriented Design Process

Outline

@ Object-Oriented Design
@ Object-Oriented Design Process

Chapter 4 — Design 42/72

bject-Oriented Design Process

The Process

Chapter 4 — Desi

Object-Orien! Object-Oriented Design Process

The Process

@ Steps in the process:
Understand context and use
Design system architecture
Identify main objects
Design system models
Specify object interfaces

Chapter 4 — Design

Object-Orien! Object-Oriented Design Process

The Process

@ Steps in the process:
Understand context and use
Design system architecture
Identify main objects
Design system models
Specify object interfaces

@ Usually an iterative, interleaved process

Chapter 4 — Design 43/72

Object-Orien{ Object-Oriented Design Process

Example: a weather mapping system

Chapter 4 — Design

Object-Orien! Object-Oriented Design Process

Basics

@ System description

o generates weather maps from data collected from several sources
o collect and integrate data into an archive
e use archive and digitized map to display/print weather map

Chapter 4 — Design 45/72

Object-Orien! Object-Oriented Design Process

Use Case and Context

o Context: how the system is connected in its environment

@ Use case: ways in which system can be used

Chapter 4 — Design 46/72

Object-Orien! Object-Oriented Design Process

Use-cases for weather station

Calibrate

Chapter 4 — Design

rieni Object-Oriented Design Process

Compltete System Arch1tecture

@ Layered architecture: each step only depends on previous step

Chapter 4 — Design

Object-Orient ct-Oriented Design Process

Compltete System Architecture

@ Layered architecture: each step only depends on previous step

Data display layer where objects are
concerned with preparing and

«subsystem» presentm? the data in a human-
0

Data display readable
- = >
Data archiving layer where objects
«subsystem» are concerned with storing the data
Data archiving for future processing
1 Data processing Iaﬁer where objects
«subsystems are concerned with checking and

Data processing integrating the collected data

Data collection layer where objects
are concerned with acquiring data

«subsystem»
from remote sources

Data collection

Object-Orien! Object-Oriented Design Process

Subsystems in the Architecture

«subsystems»
Data collection «subsystem»
Data display
= =
User Map
interface display
o M
Weather — lap
station Map | printer
«subsystems asubsystemm»
Data processing Data archiving
==
=] —1 Data
Data Data storage
checking integation
|Map store | Data store

Chapter 4 — Design 49772

Object-Orien! Object-Oriented Design Process

System Architecture of Weather Station

@ Decomposing the system

Chapter 4 — Design

System Architecture of Weather Stat1on

@ Decomposing the system
@ Weather Station architecture:

Chapter 4 — Design

Object-Orien! Object-Oriented Design Process

System Architecture of Weather Station

@ Decomposing the system
@ Weather Station architecture:

Weather station
:I—‘ Manages all
«subsystem» external

Interface communications

subsystems Colsta ond
Data collection
weather data
«subsystem» Package of
instruments for raw

Tetiuments data collections

50/72

Chapter 4 — Design

Object-Orien! Object-Oriented Design Process

Object Identification

o Figure out what objects (classes) for each system/susbsystem

Chapter 4 — Design 51/72

Object-Orien! Object-Oriented Design Process

Object Identification

o Figure out what objects (classes) for each system/susbsystem
@ Use application domain knowledge for attributes and services

Chapter 4 — Design 51/72

Object-Orien! Object-Oriented Design Process

Object Identification

o Figure out what objects (classes) for each system/susbsystem
@ Use application domain knowledge for attributes and services

o For the weather station subsystem:

WeatherStation WeatherData
identifier airlempemtures
oundemperatures
reportVieather () gindSpeedg
calibrate (instruments) : -
test () windDirections
startup (instruments) z;sg:fres
shutdown (instruments)
collect ()

Ground
thermome®er

temperature

test ()
calibrate ()

summarise ()

Anemometer Barometer
windSpeed pressure
windDirection height
test () test ()

calibmte ()

Chapter 4 — Design 51/72

Object-Orien! Object-Oriented Design Process

Design Models

@ Graphical model of system to be implemented

Chapter 4 — Design

Object-Orien! Object-Oriented Design Process

Design Models

@ Graphical model of system to be implemented
@ Helps you to program your classes later
o Bridge between requirements and implementation

Chapter 4 — Design 52/72

Object-Orient ct-Oriented Design Process

Design Models

@ Graphical model of system to be implemented

@ Helps you to program your classes later

@ Bridge between requirements and implementation
e can create conflicts for level of detail

Chapter 4 — Design 52/72

Object-Orien! Object-Oriented Design Process

Design Models

@ Graphical model of system to be implemented

@ Helps you to program your classes later

@ Bridge between requirements and implementation
e can create conflicts for level of detail

@ create several models with varying detail

Chapter 4 — Design 52/72

Object-Orien! Object-Oriented Design Process

Design Models

Graphical model of system to be implemented

Helps you to program your classes later

Bridge between requirements and implementation
e can create conflicts for level of detail

create several models with varying detail

or choose certain level of detail in single model

Chapter 4 — Design 52/72

Object-Orien! Object-Oriented Design Process

Static and Dynamic models

@ Static Models

Chapter 4 — Design

C Jrient C

Static and Dynamic models

o Static Models
o describe system structure with classes and relationships

Chapter 4 — Design

Static and Dynamic models

@ Static Models

o describe system structure with classes and relationships
o relationships: generalization, used/used-by, composition

Chapter 4 — Design

C Jrient C

Static and Dynamic models

@ Static Models

o describe system structure with classes and relationships
o relationships: generalization, used/used-by, composition

o Dynamic Models

Chapter 4 — Design

Static and Dynamic models

@ Static Models

o describe system structure with classes and relationships
o relationships: generalization, used/used-by, composition

o Dynamic Models
e show interactions between system objects (not classes)

Chapter 4 — Design

Static and Dynamic models

@ Static Models
o describe system structure with classes and relationships
o relationships: generalization, used/used-by, composition

o Dynamic Models

e show interactions between system objects (not classes)
o service requests, state chages

Chapter 4 — Design

Object-Orien! Object-Oriented Design Process

UML for Modeling

@ 12 types of graphical models to document the static and dynamic
system design

Chapter 4 — Design

Object-Orien! Object-Oriented Design Process

UML for Modeling

@ 12 types of graphical models to document the static and dynamic
system design

@ Subsystem models: show logical grouping of classes in
sub-systems

Chapter 4 — Design

Object-Orien! Object-Oriented Design Process

UML for Modeling

@ 12 types of graphical models to document the static and dynamic
system design

@ Subsystem models: show logical grouping of classes in
sub-systems
e show as packages

Chapter 4 — Design

Object-Orien! Object-Oriented Design Process

UML for Modeling

@ 12 types of graphical models to document the static and dynamic
system design

@ Subsystem models: show logical grouping of classes in
sub-systems

e show as packages
e static models

Chapter 4 — Design

Object-Orien! Object-Oriented Design Process

UML for Modeling

@ 12 types of graphical models to document the static and dynamic
system design

@ Subsystem models: show logical grouping of classes in
sub-systems

e show as packages
e static models

@ Sequence models: show sequence of object interactions

Chapter 4 — Design

Object-Orien! Object-Oriented Design Process

UML for Modeling

@ 12 types of graphical models to document the static and dynamic
system design

@ Subsystem models: show logical grouping of classes in
sub-systems

e show as packages
e static models

@ Sequence models: show sequence of object interactions
o UML sequence or collaboration diagram.

Chapter 4 — Design 54/72

Object-Orien! Object-Oriented Design Process

UML for Modeling

@ 12 types of graphical models to document the static and dynamic
system design

@ Subsystem models: show logical grouping of classes in
sub-systems

e show as packages
e static models

@ Sequence models: show sequence of object interactions

o UML sequence or collaboration diagram.
e dynamic models

Chapter 4 — Design 54/72

Object-Orien! Object-Oriented Design Process

UML for Modeling

@ 12 types of graphical models to document the static and dynamic
system design

@ Subsystem models: show logical grouping of classes in
sub-systems

e show as packages
e static models

@ Sequence models: show sequence of object interactions

o UML sequence or collaboration diagram.
e dynamic models

o State machine models: show state changes for individual objects

Chapter 4 — Design

Object-Orien! Object-Oriented Design Process

UML for Modeling

@ 12 types of graphical models to document the static and dynamic
system design

@ Subsystem models: show logical grouping of classes in
sub-systems

e show as packages
e static models

@ Sequence models: show sequence of object interactions

o UML sequence or collaboration diagram.
e dynamic models

o State machine models: show state changes for individual objects
e events and responses

Chapter 4 — Design 54/72

Object-Orien! Object-Oriented Design Process

UML for Modeling

@ 12 types of graphical models to document the static and dynamic
system design

@ Subsystem models: show logical grouping of classes in
sub-systems

e show as packages
e static models

@ Sequence models: show sequence of object interactions

o UML sequence or collaboration diagram.
e dynamic models

o State machine models: show state changes for individual objects

e events and responses
o state chart diagrams

Chapter 4 — Design 54/72

Object-Orien! Object-Oriented Design Process

UML for Modeling

@ 12 types of graphical models to document the static and dynamic
system design

@ Subsystem models: show logical grouping of classes in
sub-systems

e show as packages
e static models

@ Sequence models: show sequence of object interactions

o UML sequence or collaboration diagram.
e dynamic models

o State machine models: show state changes for individual objects

e events and responses
o state chart diagrams
e dynamic models

Chapter 4 — Design 54/72

Object-Orien! Object-Oriented Design Process

UML for Modeling

12 types of graphical models to document the static and dynamic
system design

Subsystem models: show logical grouping of classes in
sub-systems

e show as packages

o static models

Sequence models: show sequence of object interactions
o UML sequence or collaboration diagram.
e dynamic models
o State machine models: show state changes for individual objects
e events and responses
o state chart diagrams
e dynamic models
@ Other model types in UML: use case, object models, generalization,
etc.

Chapter 4 — Design 54/72

Object-Orien! Object-Oriented Design Process

Subsystem Models

@ Objects in weather station package:
«subsystem» «subsystem»
Interface Data collection
«subsystem»
Instruments
Air N
thermometer| RainGauge Anemometer

‘ WindVane

WeatherData

Tnstrument
Status

Barometer

roun
thermometer

Figure: Weather station packages

Object-Orien! Object-Oriented Design Process

Subsystem Models

@ simple associations as well

Chapter 4 — Design 56/72

Object-Orien! Object-Oriented Design Process

Subsystem Models

@ simple associations as well
@ sub-system model + class model = describe logical grouping

Chapter 4 — Design 56/72

Object-Orient ct-Oriented Design Process

Subsystem Models

@ simple associations as well
@ sub-system model + class model = describe logical grouping
@ usually relate to Java packages/libraries

Chapter 4 — Design 56/72

Object-Orien! Object-Oriented Design Process

Sequence Diagrams

@ Document interactions

Chapter 4 — Design 57/72

Object-Orien! Object-Oriented Design Process

Sequence Diagrams

@ Document interactions

@ For each interaction: sequence of object interactions

Object-Orien! Object-Oriented Design Process

Sequence Diagrams

@ Document interactions

@ For each interaction: sequence of object interactions

% |:CommsControIIer| | :WeatherStatior1 | :WeatherData |
request (repar)
P ——

acknowledge ()
repott ()

summarise ()

send (repot)
reply (repot) T
- H

acknowledge ()
—_—

Figure: Sequence of operations in data collection

Chapter 4 — Design 57/72

Object-Orient ct-Oriented Design Process

Sequence Diagrams

@ Objects shown horizontally, time vertically

Chapter 4 — Design 58/72

Object-Orient ct-Oriented Design Process

Sequence Diagrams

@ Objects shown horizontally, time vertically
@ Labeled arrows show atomic interactions between objects

Chapter 4 — Design 58/72

Sequence Diagrams

@ Objects shown horizontally, time vertically
@ Labeled arrows show atomic interactions between objects

e represent messages
o not data flows

Chapter 4 — Design 58/72

Object-Orien! Object-Oriented Design Process

Sequence Diagrams

@ Objects shown horizontally, time vertically
@ Labeled arrows show atomic interactions between objects

e represent messages
o not data flows

@ thin rectangles: when the object is the controlling object

Chapter 4 — Design 58/72

Object-Orient ct-Oriented Design Process

Sequence Diagrams

@ Objects shown horizontally, time vertically
@ Labeled arrows show atomic interactions between objects

e represent messages
o not data flows

@ thin rectangles: when the object is the controlling object

e in a hierarchy, control is not relinquished until original object is
replied to

Chapter 4 — Design 58/72

Object-Orien! Object-Oriented Design Process

Sequence Diagrams

@ Objects shown horizontally, time vertically
@ Labeled arrows show atomic interactions between objects

e represent messages
o not data flows

@ thin rectangles: when the object is the controlling object

e in a hierarchy, control is not relinquished until original object is
replied to

@ Sequence Diagrams also for single objects

Chapter 4 — Design 58/72

Object-Orien! Object-Oriented Design Process

State Diagrams

e For important objects: show their lifetimes and event responses

Chapter 4 — Design 59/72

Object-Orien! Object-Oriented Design Process

State Diagrams

e For important objects: show their lifetimes and event responses

Operation calibrate () Calbrating
Calibration OK

test
(" waiting st Testing

transmission done test complete

statup ()

"4

Transmitting
collection
done

clock

weather summary
complete

Collecting

Figure: State diagram for weather station

59/72

Object-Orien! Object-Oriented Design Process

State Diagrams

e For important objects: show their lifetimes and event responses

Operation calibrate () Calibrating

calibration OK
test
(" vaiting © Testing

transmission done test complete

statup ()

"4

Transmitting
V4

clock | | collection
done

weather summary
complete

Collecting

Figure: State diagram for weather station

o States can be helpful when implementing the class

Chapter 4 — Design

59/72

Object-Orien! Object-Oriented Design Process

Object-Interface Specification

@ Only the interface

Chapter 4 — Design

Object-Orien! Object-Oriented Design Process

Object-Interface Specification

@ Only the interface
e not implementation or data items

Chapter 4 — Design

Object-Orien! Object-Oriented Design Process

Object-Interface Specification

@ Only the interface

e not implementation or data items
e no internal details (private methos etc.)

Chapter 4 — Design 60/72

Object-Orien! Object-Oriented Design Process

Object-Interface Specification

@ Only the interface

e not implementation or data items
e no internal details (private methos etc.)

@ helps concurrent development

Chapter 4 — Design 60/72

Object-Orien! Object-Oriented Design Process

Object-Interface Specification

@ Only the interface

e not implementation or data items
e no internal details (private methos etc.)

@ helps concurrent development

@ more maintainable than full specification of classes

Chapter 4 — Design 60/72

Object-Orien! Object-Oriented Design Process

Object-Interface Specification

@ Only the interface

e not implementation or data items
e no internal details (private methos etc.)

@ helps concurrent development
@ more maintainable than full specification of classes
@ Two approaches:

Chapter 4 — Design 60/72

Object-Orient ct-Oriented Design Process

Object-Interface Specification

@ Only the interface

e not implementation or data items
e no internal details (private methos etc.)

@ helps concurrent development
@ more maintainable than full specification of classes

@ Two approaches:
o each interface is a class in Java

Chapter 4 — Design 60/72

Object-Orient ct-Oriented Design Process

Object-Interface Specification

@ Only the interface

e not implementation or data items
e no internal details (private methos etc.)

@ helps concurrent development
@ more maintainable than full specification of classes

@ Two approaches:

o each interface is a class in Java
o declare interfaces separately from classes

Chapter 4 — Design 60/72

Object-Interface Specification

@ Only the interface

e not implementation or data items
e no internal details (private methos etc.)

@ helps concurrent development
@ more maintainable than full specification of classes

@ Two approaches:

o each interface is a class in Java
o declare interfaces separately from classes

@ use interface and let classes implement an interface

@ Simply use Java (or another OO PL) to define interfaces

Chapter 4 — Design 60/72

Object-Orien! Object-Oriented Design Process

Design Evolution

@ OO approach allows for easy changes to design

Chapter 4 — Design 61/72

Object-Orien! Object-Oriented Design Process

Design Evolution

@ OO approach allows for easy changes to design
o state representation does not affect interface

Chapter 4 — Design 61/72
P 2]

Object-Orien! Object-Oriented Design Process

Design Evolution

@ OO approach allows for easy changes to design

o state representation does not affect interface
o objects are loosely coupled = easy to introduce new ones

Chapter 4 — Design 61/72

Object-Orien! Object-Oriented Design Process

Design Evolution

@ OO approach allows for easy changes to design

o state representation does not affect interface
o objects are loosely coupled = easy to introduce new ones

o E.g.: add pollution-monitoring to weather station

Chapter 4 — Design 61/72

Object-Orien! Object-Oriented Design Process

Design Evolution

@ OO approach allows for easy changes to design

o state representation does not affect interface
o objects are loosely coupled = easy to introduce new ones

o E.g.: add pollution-monitoring to weather station
e introduce Air quality class at Weather Data level

Chapter 4 — Design 61/72

Object-Orien! Object-Oriented Design Process

Design Evolution

@ OO approach allows for easy changes to design

o state representation does not affect interface
o objects are loosely coupled = easy to introduce new ones

o E.g.: add pollution-monitoring to weather station

e introduce Air quality class at Weather Data level
o add reportAirQuality() operation to WeatherStation

Chapter 4 — Design 61/72

Object-Orien! Object-Oriented Design Process

Design Evolution

@ OO approach allows for easy changes to design

o state representation does not affect interface
o objects are loosely coupled = easy to introduce new ones

o E.g.: add pollution-monitoring to weather station

e introduce Air quality class at Weather Data level
o add reportAirQuality() operation to WeatherStation
e add classes for pollution monitoring

Chapter 4 — Design 61/72

@ Interface Design

Chapter 4 — Design

Introduction

@ “Design interface with user’s experience and interaction in
mind”

Chapter 4 — Design

Introduction

@ “Design interface with user’s experience and interaction in
mind”
o Field of Human Computer Interaction

Chapter 4 — Design

Introduction

@ “Design interface with user’s experience and interaction in
mind”

o Field of Human Computer Interaction

o Examples:

Chapter 4 — Design

Introduction

@ “Design interface with user’s experience and interaction in
mind”

o Field of Human Computer Interaction

o Examples:

o Command line interface
o XHTML/CSS

e Swing

o sometimes combined with hardware design

Chapter 4 — Design

Introduction

@ “Design interface with user’s experience and interaction in
mind”

o Field of Human Computer Interaction

o Examples:

o Command line interface

o XHTML/CSS

e Swing

o sometimes combined with hardware design

@ Software developer == Interface designer

Chapter 4 — Design

Introduction

@ Good user experience is crucial to product success

Chapter 4 — Design

Introduction

@ Good user experience is crucial to product success

@ User errors are often a result of bad interface design

Chapter 4 — Design 64/72

Introduction

@ Good user experience is crucial to product success

@ User errors are often a result of bad interface design

The Design of
Everyday Things

Donald A. Norman

Chapter 4 — Design 64/72

Introduction

@ Bad interface leads to

e frustration

Chapter 4 — Design

Introduction

@ Bad interface leads to

e frustration
o inaccessible / difficult to use features

Chapter 4 — Design

Introduction

@ Bad interface leads to

e frustration
o inaccessible / difficult to use features
o mistakes

Chapter 4 — Design 65/72

Introduction

@ Bad interface leads to

e frustration
o inaccessible / difficult to use features
o mistakes

@ Some (random) guides:

Chapter 4 — Design

Introduction

@ Bad interface leads to

e frustration
o inaccessible / difficult to use features
o mistakes

@ Some (random) guides:

o make user interaction simple and efficient (Quicksilver, TaDa List,
Ubiquity, !gpsGuide, [Password-engine)

Chapter 4 — Design 65/72

Introduction

@ Bad interface leads to
o frustration
o inaccessible / difficult to use features
o mistakes
@ Some (random) guides:
o make user interaction simple and efficient (Quicksilver, TaDa List,
Ubiquity, !gpsGuide, [Password-engine)
e balance meaning with action (icons in any app, Reason, !Office
2010)

Chapter 4 — Design 65/72

Introduction

@ Bad interface leads to
o frustration
o inaccessible / difficult to use features
o mistakes
@ Some (random) guides:
o make user interaction simple and efficient (Quicksilver, TaDa List,
Ubiquity, !gpsGuide, [Password-engine)
e balance meaning with action (icons in any app, Reason, !Office
2010)
e understand and aid human memory (!16tone, !SonicMood)

Chapter 4 — Design 65/72

Introduction

@ Bad interface leads to

e frustration

o inaccessible / difficult to use features

o mistakes

@ Some (random) guides:

o make user interaction simple and efficient (Quicksilver, TaDa List,
Ubiquity, !gpsGuide, [Password-engine)

e balance meaning with action (icons in any app, Reason, !Office
2010)

e understand and aid human memory (!16tone, !SonicMood)

o don't terrorize user with errors (http://adobegripes.tumblr.com)

Chapter 4 — Design 65/72

Introduction

@ Bad interface leads to

o frustration

o inaccessible / difficult to use features

o mistakes

@ Some (random) guides:

o make user interaction simple and efficient (Quicksilver, TaDa List,
Ubiquity, !gpsGuide, [Password-engine)

e balance meaning with action (icons in any app, Reason, !Office
2010)

e understand and aid human memory (!16tone, !SonicMood)

o don't terrorize user with errors (http://adobegripes.tumblr.com)

o work with user’s capabilities (accessibility, Frenzic, Mac toolbar,
!Any (old) Linux GUI interface)

Chapter 4 — Design 65/72

Formal principles

o User familiarity

Chapter 4 — Design

Formal principles

o User familiarity
o Consistency

Chapter 4 — Design

Formal principles

o User familiarity
o Consistency

@ Minimal surprise

Chapter 4 — Design

Formal principles

o User familiarity
o Consistency
@ Minimal surprise

@ Recoverability

Chapter 4 — Design

Formal principles

o User familiarity
o Consistency

@ Minimal surprise
@ Recoverability

o User guidance

Chapter 4 — Design

Formal principles

o User familiarity
o Consistency

@ Minimal surprise
@ Recoverability

o User guidance

o User diversity

Chapter 4 — Design

Issues of Interface Design

Answer two questions:
e How should user interact with system?
@ How should information be presented to user?

Chapter 4 — Design

User Interaction

@ Advanced from interfaces designed for experts

Chapter 4 — Design

User Interaction

@ Advanced from interfaces designed for experts
o Current interaction styles:

Chapter 4 — Design

User Interaction

@ Advanced from interfaces designed for experts
o Current interaction styles:
o direct manipulation

Chapter 4 — Design

User Interaction

@ Advanced from interfaces designed for experts
o Current interaction styles:

o direct manipulation
o menu selection

Chapter 4 — Design

User Interaction

@ Advanced from interfaces designed for experts
o Current interaction styles:

o direct manipulation
o menu selection
o form fill-in

Chapter 4 — Design

User Interaction

@ Advanced from interfaces designed for experts
o Current interaction styles:

o direct manipulation
o menu selection

o form fill-in

o command language

Chapter 4 — Design

User Interaction

@ Advanced from interfaces designed for experts
o Current interaction styles:

o direct manipulation
o menu selection

o form fill-in

o command language
o natural language

Chapter 4 — Design

User Interaction

@ Advanced from interfaces designed for experts
o Current interaction styles:

o direct manipulation
o menu selection

o form fill-in

o command language
o natural language

Chapter 4 — Design

Comaprisons of Interface Styles

Interaction
style

Direct
manipulation

Menu
selection

Form fill-in

Command
language

Natural
language

Main advantages

Fast and intuitive

interaction
Easy to learn

Avoids user error
Little typing required

Simple data entry
Easy to leam
Checkable

Powerful and flexible

Accessible to casual

¢ extended

Main disadvantages

May be hard to implement
Only suitable where there is a
visual metaphor for tasks and
objects.

Slow for experienced users.
Can become complex if many
menu options.

Takes up a lot of screen space
Causes problems where user
options do not match the form
ficlds

Hard to learn.
Poor error management.

Requires more typing.
Natural language understanding
systems are unreliable.

Application
examples

Video games
CAD systems

Most general-
PUTPOSE Systems

Stock control,
Personal loan
processing

Operating systems,
Command and
control systems

Information
retrieval systems

Figure: Interaction Styles Merits/Demerits

Chapter 4 — Design

Interaction Issues

o single application may have mixed styles

Chapter 4 — Design

Interaction Issues

o single application may have mixed styles

e e.g., Linux: direct manipulation, menu selection, command
language

Chapter 4 — Design

Interaction Issues

o single application may have mixed styles
e e.g., Linux: direct manipulation, menu selection, command
language
@ Web interfaces

Chapter 4 — Design

Interaction Issues

o single application may have mixed styles
e e.g., Linux: direct manipulation, menu selection, command
language
@ Web interfaces
o mostly forms based

Chapter 4 — Design

Interaction Issues

o single application may have mixed styles
e e.g., Linux: direct manipulation, menu selection, command
language
@ Web interfaces

o mostly forms based
e direct manipulation ?

Chapter 4 — Design

Interaction Issues

o single application may have mixed styles
e e.g., Linux: direct manipulation, menu selection, command
language
@ Web interfaces

o mostly forms based
e direct manipulation ?
o command language ?

Chapter 4 — Design

Information Presentation

@ Use the MVC approach for focusing on Ul

Chapter 4 — Design

Information Presentation

@ Use the MVC approach for focusing on Ul
@ Kinds of presentation elements depend on many factors:

Chapter 4 — Design

Information Presentation

@ Use the MVC approach for focusing on Ul
@ Kinds of presentation elements depend on many factors:
e precise vs relationships (tables/text/graphs, sparklines)

Chapter 4 — Design

Information Presentation

@ Use the MVC approach for focusing on Ul
@ Kinds of presentation elements depend on many factors:

e precise vs relationships (tables/text/graphs, sparklines)
o speed of change in values (tables/graphs, animation)

Chapter 4 — Design

Information Presentation

@ Use the MVC approach for focusing on Ul
@ Kinds of presentation elements depend on many factors:

e precise vs relationships (tables/text/graphs, sparklines)
o speed of change in values (tables/graphs, animation)

@ Visualizations for large, changing, interactive data

Chapter 4 — Design

Information Presentation

@ Use the MVC approach for focusing on Ul
@ Kinds of presentation elements depend on many factors:

e precise vs relationships (tables/text/graphs, sparklines)
o speed of change in values (tables/graphs, animation)

@ Visualizations for large, changing, interactive data
o molecule models, network graphs

Chapter 4 — Design

Information Presentation

@ Use the MVC approach for focusing on Ul
@ Kinds of presentation elements depend on many factors:

e precise vs relationships (tables/text/graphs, sparklines)
o speed of change in values (tables/graphs, animation)

@ Visualizations for large, changing, interactive data
o molecule models, network graphs
@ Color usage:

Chapter 4 — Design

Information Presentation

@ Use the MVC approach for focusing on Ul
@ Kinds of presentation elements depend on many factors:

e precise vs relationships (tables/text/graphs, sparklines)
o speed of change in values (tables/graphs, animation)

@ Visualizations for large, changing, interactive data
o molecule models, network graphs

@ Color usage:
o few (4-5)

Chapter 4 — Design

Information Presentation

@ Use the MVC approach for focusing on Ul
@ Kinds of presentation elements depend on many factors:
e precise vs relationships (tables/text/graphs, sparklines)
o speed of change in values (tables/graphs, animation)
@ Visualizations for large, changing, interactive data
o molecule models, network graphs
@ Color usage:
o few (4-5)
e system change == color change

Chapter 4 — Design

Information Presentation

@ Use the MVC approach for focusing on Ul
@ Kinds of presentation elements depend on many factors:
e precise vs relationships (tables/text/graphs, sparklines)
o speed of change in values (tables/graphs, animation)
@ Visualizations for large, changing, interactive data
o molecule models, network graphs
@ Color usage:
o few (4-5)
e system change == color change
o display anomalies, similarities

Chapter 4 — Design

Information Presentation

@ Use the MVC approach for focusing on Ul
@ Kinds of presentation elements depend on many factors:
e precise vs relationships (tables/text/graphs, sparklines)
o speed of change in values (tables/graphs, animation)
@ Visualizations for large, changing, interactive data
o molecule models, network graphs
@ Color usage:
o few (4-5)
e system change == color change
o display anomalies, similarities
e consistency

Chapter 4 — Design

Information Presentation

@ Use the MVC approach for focusing on Ul

@ Kinds of presentation elements depend on many factors:
e precise vs relationships (tables/text/graphs, sparklines)
o speed of change in values (tables/graphs, animation)

@ Visualizations for large, changing, interactive data
o molecule models, network graphs

@ Color usage:
o few (4-5)

system change == color change

display anomalies, similarities

consistency

eye strain (red-on-blue)

Chapter 4 — Design

UI Design Process

@ 3-step process

Chapter 4 — Design

UI Design Process

@ 3-step process

Analyse and
understand
user activit\e

Produce paper-}
based design
prototype

Design
prototype ’
J

Produce
dynamic design
prototype

final user

intefface

Chapter 4

UI Design Process

@ 3-step process

Analyse and
understand
user activit\e

Produce paper-}
based design
prototype

Design
prototype ’
J

Evaluate design
with end-users JJ
> 4

Produce \
dynamic design
prototype J)

Evaluate design
with end-users J§j
——
/ /
Executable n_._ Ims;??:::
prototype nterface
| 5 /

@ User analysis, System prototyping, Interface evaluation

Chapter 4 — Design 72/72

	Introduction
	Architectural Design
	System Organization
	Distributed Systems Architecture

	Application Architectures
	Types of AAs

	Object-Oriented Design
	Object-Oriented Design Process

	Interface Design

