An Introduction to Software
Engineering

Topics covered

< FAQs about software engineering
< Professional and ethical responsibility

uuuuuuuuuuuuuuuuuuuuuuu

Engineering

Engineering is the discipline and profession of
applying technical and scientific knowledge and
utilizing natural laws and physical resources in
order to design and implement materials,
structures, machines, devices, systems, and
processes that safely realize a desired objective
and meet specified criteria

Tuesday, February 17, 2009

Software Enginerring (SE)

“ (Almost) everything depends on software.
< SE: theories, methods and tools for software
development.
“ No physical constraints (materials, physical
laws)
< simplifies: no limits on potential
< makes things very complex!

Tuesday, February 17, 2009

Differences from other Engg.

disciplines

< Some differences’
< software: flexible, designed to change

< (no mass production) build only one product, then

copy
< almost no fundamental laws apply

< specifications can always change

Thttp://www.ibm.com/developerworks/rational/library/dec05/pollice/index.html

Tuesday, February 17, 2009

http://www.ibm.com/developerworks/rational/library/dec05/pollice/index.html
http://www.ibm.com/developerworks/rational/library/dec05/pollice/index.html

"...30% of all software projects are
canceled, nearly half come in over
budget, 60% are considered failures by
the organizations that initiated them,
and 9 out of 10 come in late."

— Economist magazine (Nov 27, 2004 p. 71)

6

Tuesday, February 17, 2009

Software Engineering (SE)

"

* Without SE, software is often:

N/

< unreliable, late delivered, over-budget
Still: more art, less science

* No single ideal approach

N/
%°*

AR

* but some fundamental ideas

Tuesday, February 17, 2009

FAQs about SE

N
%

What is software?
. software engineering?
.. the difference between SE and CS?
. a software process?
. a software process model?
.. the attributes of good software?
.. the key challenges facing software
engineering?
“ ... software engineering methods:

N/
%*

N N/ N N
% % % %

N
%

Tuesday, February 17, 2009

What is software?

< Computer programs and
< documentation: requirements, manuals

< configuration data
< Software products may be:

< Generic
< Bespoke (custom)
< line is becoming blurred

Tuesday, February 17, 2009

What is SE?

“ Engineering discipline for all aspects of
software production.
< engineering:
** theories, methods, tools
% selectively

% solutions for problems with no theories and methods
< all aspects:
< not just s/w development (“coding”)
< Choose the best technique based on current
task

Tuesday, February 17, 2009

10

SE vs. CS

< (CS: theory and fundamentals

< SE: practicalities of developing and delivering
useful software.

< (S theories insufficient as a complete
foundation for SE

< (unlike e.g. physics and electrical engineering).

Tuesday, February 17, 2009

Software process

< Set of activities. Goal: production of software

< Specification - expectations from system +
development constraints

< Development - production of the software system

< Validation - checking that the software is what the
customer wants

<» Evolution - changing the software in response to
changing demands.

Tuesday, February 17, 2009

Software process model?

% Simplified representation of a software
process
% Types of models:

< Workflow - sequence of (human) activities
< Data-flow - information flow

< Role/action - who does what
< Generic process models

< Waterfall
% |terative developmen
< Component-based software engineering

Tuesday, February 17, 2009

Costs of SE

N/
%*

60%: development costs

40%: testing costs

» Distribution of costs depends on the
development model that is used.

N
%

AR

Tuesday, February 17, 2009

Activity cost distribution

Waterfall model

0 50 75 100
Speahcation Desgn Development Integration and testing
Iterative development
0 25 50 75 100
Speahication Iterative development System testing
Component-based software engineering
0 25 S0 75 100
Speofication Development Integration and testing
Development and evolution costs for long-lifetime systems
0 10 200 0 400
"-',"?h"rﬁ d“'.'f‘ll'nr.-’r:(‘ﬁf Sl{t_'.':"‘ 00 Jl aon |5

Tuesday, February 17, 2009

Software Engineering methods

< Structured approaches to s/w development
“* how to structure programming
“ Function-oriented (70s)
% Object-oriented (80s, 905s)
“ UML-based unified approaches (currently)
“ No single ideal method
< e.g.: 00 » great for interactive systems

% not for real-time systems

Tuesday, February 17, 2009

Attributes of good software

< Maintainability

< evolve to meet changing needs
< Dependability

< trustworthy

< Efficiency

< Efficient with use of system resources
< Acceptability
» accepted by the users for which it was designed.

< understandable, usable and compatible with other
SyStemS. 17

Tuesday, February 17, 2009

Key challenges facing SE

< Heterogeneity

* Developing techniques for building software that
can cope with heterogeneous platforms and
execution environments

< Delivery
< Developing techniques that lead to faster delivery
of software
< Trust

< Developing techniques that demonstrate that
software can be trusted by its users.

Tuesday, February 17, 2009

Professional and ethical

responsibility

“ SE involves great responsibilities
“* more than application of technical skills

% Software engineers must behave in an honest
and ethically responsible way

< Ethical behaviour is more than simply
upholding the law.

uuuuuuuuuuuuuuuuuuuuuuu

Issues of professional

responsibilit

< Confidentiality

< respect the confidentiality of their employers or
clients irrespective of whether or not a formal
confidentiality agreement has been signed.

< Competence

“ Engineers should not misrepresent their level of
competence.

20

Tuesday, February 17, 2009

Issues of professional

responsibilit

< Intellectual property rights

< be aware of local laws governing the use of
intellectual property such as patents, copyright,
etc.

< Computer misuse

< Software engineers should not use their technical
skills to misuse other people’s computers.
Computer misuse ranges from relatively trivial
(game playing on an employer’s machine, say) to
extremely serious (dissemination of viruses).

21

Tuesday, February 17, 2009

ACM/IEEE Code of Ethics

< Code of ethical practice.

“ Members sign up to the code of practice when
they join.

% 8 Principles for practitioners, educators,
managers, supervisors and policy makers, as well
as trainees and students of the profession.

22

Tuesday, February 17, 2009

Ethical dilemmas

% Disagreement in principle with the policies of
senior management.

< Your employer acts in an unethical way and
releases a safety-critical system without
finishing the testing of the system.

< Participation in the development of military
weapons systems or nuclear systems.

23

Tuesday, February 17, 2009

Systems

24

Tuesday, February 17, 2009

What is a “"system”?

A purposeful collection of
interrelated components that
work together to achieve
some objective

25

uuuuuuuuuuuuuuuuuuuuuuu

Emergent System Properties

N
0‘0

present in complex systems

“the whole is more than sum of its parts”
can’t be atttributed to a single subsystem
result from relationships/communication

N N
% %

N/
%

26

Tuesday, February 17, 2009

Emergent System Properties

% Functional: when the parts work together for
an objective

< for e.g., the parts of a bicycle
“ Non-functional: behavior in its operational
environment
< reliability
< performance
< safety
“ security

< usability

27

Tuesday, February 17, 2009

Non-functional Properties

< Often more important than functional
< Must be considered at system level

“* not at component level

< E.g.: reliability
< interdependent components
» failure propogates

28

Tuesday, February 17, 2009

‘shall-not’ Properties

“ Most properties are ‘shall’; easily measurable
“* performadnce

% dccuracy
< ‘shall-not’: properties not to be exhibited

< safety: system shouldn’t behave in an unsafe way

< security: system shouldn’t permit unauthorized
access

29

Tuesday, February 17, 2009

Systems Engineering

< Activities in the process of developing and
maintaing a system

equ1rement System
def1n1t10n decomm1ss10n1ng

Syste ystem
demgn evolutlo
Sub-system System
development installation

System
integration

30

Tuesday, February 17, 2009

Software Engineering Process

< We will cover following phases in the process:
< Specification/Requirements gathering
* Design

(4

)

@,

NCS

* Development

NS

* Evaluation

4

@,

* Evolution
< Waterfall or Iterative

@,

31

Tuesday, February 17, 2009

The data-flow view

Problem

requirements engineering

Requiremements specification

design

implementation

Program

testing

Working Program

maintenance

32

Tuesday, February 17, 2009

Requirements Engineering

< Complete description of problem
% software’s functions
% future extensions
% documentation

“* response time & other performance
< Also, requirements posed by & on
environment (the constraints)

** hardware + software

< number of users
< Result: requirement specification .

Tuesday, February 17, 2009

Design /[Modeling

< Create a model to be implemented
< Usually includes

“* components

“* interfaces
* Design decisions impact final quality
Work more on what and less on how
Result: technical specification

N/ N
% L X4

N
%

< starting point for implementation

34

Tuesday, February 17, 2009

Implementation

< Focus on individual components

< translate specification to modules, classes
* Usually includes another “design’” phase:

< pseudocode
< Focus on:

< good documentation
< flexible, easy to read code
% reliable, correct

“* Not on: speed, features
% Result: executable program

Tuesday, February 17, 2009

35

Testing

% Usually not just after implementation phase
< Start testing in first phase and refine

< detect errors early and correct
% Testing at phase boundaries:

** verification: transition is correct
< validation: check against requirements

36

Tuesday, February 17, 2009

Maintenance

< After delivery
“ new errors

“* requrests for changes + enhancements
< Good maintenanability depends on earlier

phases

37

Tuesday, February 17, 2009

Division of efforts

design 15% coding 20%

requirements
engineering 10%

specification 10% \

\ / testing 45%

The 40-20-40 “rule”

Also 60-15-25 “rule”

38

Tuesday, February 17, 2009

Control

< Project control for
“* time

¢ information

% organization

< quality

“* resources

39

Tuesday, February 17, 2009

40

Tuesday, February 17, 2009

Traditional Software Lifecycle

< Phased development
2 identifiable milestones

% usually correspond to some document’s availability

< i.e. Document-driven development
% planning-driven, heavyweight
< traditional model (like waterfall)

% Good for large projects (more than 50 people)

41

Tuesday, February 17, 2009

Agile Lifecycles

“ Agile methods, evolved from
< Prototyping
<» Rapid Application Development
< Change is constant; specially requirements
“ lightweight, agile process models
“ develop quickly (prototype), get feedback,
evolve
< involve users: people oriented
development cycles: small & incremental

4

N
0‘0

< working system at end of each cycle

42

Tuesday, February 17, 2009

Agile Methods

< Key values:
< individuals & interactions > processes & tools
< working software > comprehensive documentation

< responding to change > following a plan
% Usually a mixture of traditional & agile
methods

43

Tuesday, February 17, 2009

Synchronize & stabilize

< Divide projectin 4 - 5 builds
< each adds functionalities

< Synchronize:
» test and debug at end of day

“* executable version of software
< Stabilize: finalize a build

* fix and freeze

)

4

@,

* acts as baseline for future development

@,

44

Tuesday, February 17, 2009

Extreme Programming (XP)

< Pure agile method

<* Takes best practices to extreme
“ For e.g., pair programming
< Simplest design, since future is unclear

< complete a task, then improve (refactor)
XL (pg 68)

45

Tuesday, February 17, 2009

46

Tuesday, February 17, 2009

Introduction

< Software development projects involve
< several people

< long period of time
% Need for careful planning and control
“ At a higher level than the process model

47

Tuesday, February 17, 2009

Steps In a Project Plan

AR

* Choose process model

* Project organization: interactions, teams,
roles

* Standards, guidelines

* Resources

* Quality assurance

Budget and Schedule

Changes

* Delivery

AR

O &

N/ N N
4 % % L X4

‘0

48

Tuesday, February 17, 2009

Control

< Project control for
“* time

¢ information

% organization

< quality

“* resources

49

Tuesday, February 17, 2009

