Predicting Outcomes of NCAA Basketball Tournament Games

Aaron Cripe March 12, 2008 Math Senior Project

Project Goals

- Collect data from NCAA Men's Division I Basketball Tournaments 2004-2007
- Compute the relative strength for all the rating systems of the favored team for each game in the tournament.
- Compute relative strength by both ratio and difference to test the accuracy of the predictions of each rating system.
- Are all five rating systems statistically significant predictors of outcomes?
- Does one rating system predict the outcome better than the others?
- Is the relative strength a good predictor of the probability that the favored team wins that particular game?

Rating Systems

- RPI Ratings Percentage Index
- Pomeroy
- Sagarin
- Massey
- Tournament Seeds

Comparing the Systems

	Margin of Victory	Home Court	Strength of Schedule	Strength of Opponents Schedule	Record (win and losses)	Range of Ratings
RPI	No	Yes	Yes	Yes	Yes	0.0 to 1.0
Pomeroy	Yes	Yes	Yes	No	Yes	0.0 to 100
Sagarin	Yes	Yes	Yes	No	Yes	0 to 100
Massey	Yes	Yes	No	No	Yes	-4.0 to 4.0

Tournament Seeds

• The team's actual seed is determined by a committee that has access to the other rating systems.

• Does that mean that the tournament seeds should be a better predictor than the other systems?

Any Problems?

- Massey 2005
- Pomeroy 2007 (Instead of 252, we had 189)
- Ties?
 - One for RPI
 - Two for seeds

Rating Systems' Predicting Ability

Rating System	Success rate for predicting winner
Seeds	73.2%
Pomeroy	73.0%
Massey	72.6%
Sagarin	72.2%
RPI	70.9%

Statistically Significant?

• Hypothesis Test for One Sample (RPI)

 $\begin{array}{ll} H_0: p = .50 & \text{System is ineffective < default assumption} \\ H_A: p > .50 & \text{System is efficient in predicting} \end{array}$

where p is the population proportion of correct prediction

After calculating we obtain a z-score = 6.62. Any z-score > 3 will result in a p-value that is approaching zero. Thus our p-value < 0.05, so we can conclude our alternate hypothesis.

Which one is better?

• Hypothesis Test for two samples (Seeds and RPI)

 $H_0: p_1 = p_2 \qquad \text{No difference between seeds and RPI}$ $H_A: p_1 \neq p_2 \qquad \text{There is a difference between the two}$

After calculating we obtain a z-score = .58. Using a statistical table we obtain a p-value = .562. Thus our p-value is not less than 0.05, so we can conclude that our alternate hypothesis is false. There is not significant difference between the two, seeds and RPI.

Predicting Game Outcomes Using Relative Strength

• Logistic Regression Model

$$\ln\frac{p}{1-p} = \beta_0 + \beta_1 x$$

Log of odds is a linear function of relative strength

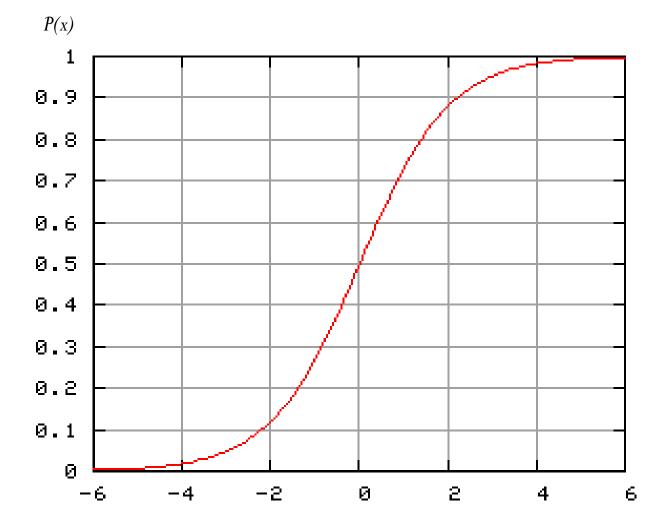
$$p(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

Predicting the probability of winning

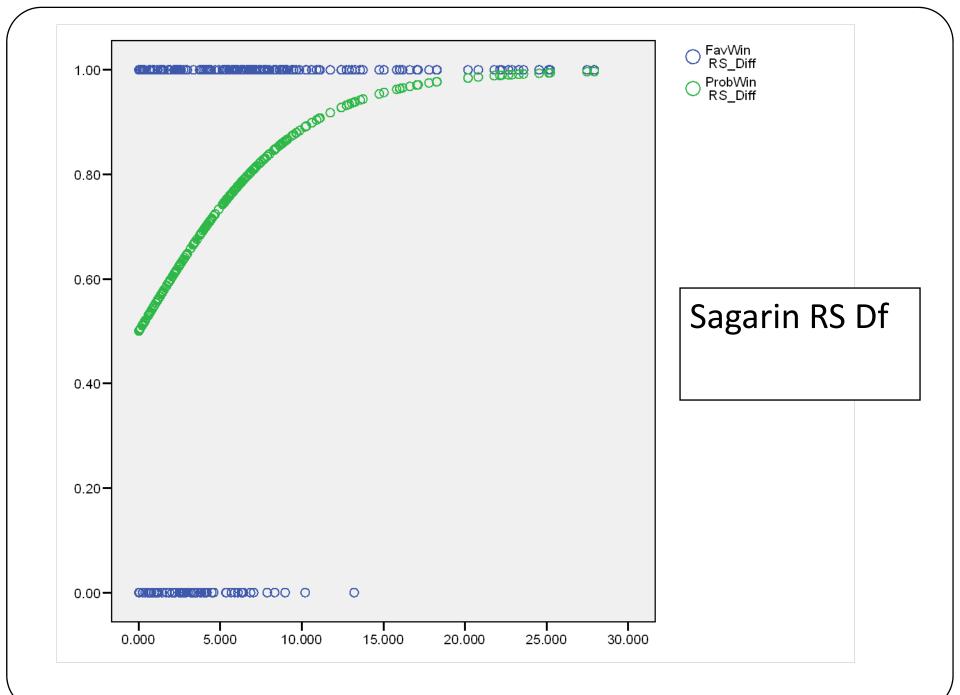
$\beta_0 = 0$

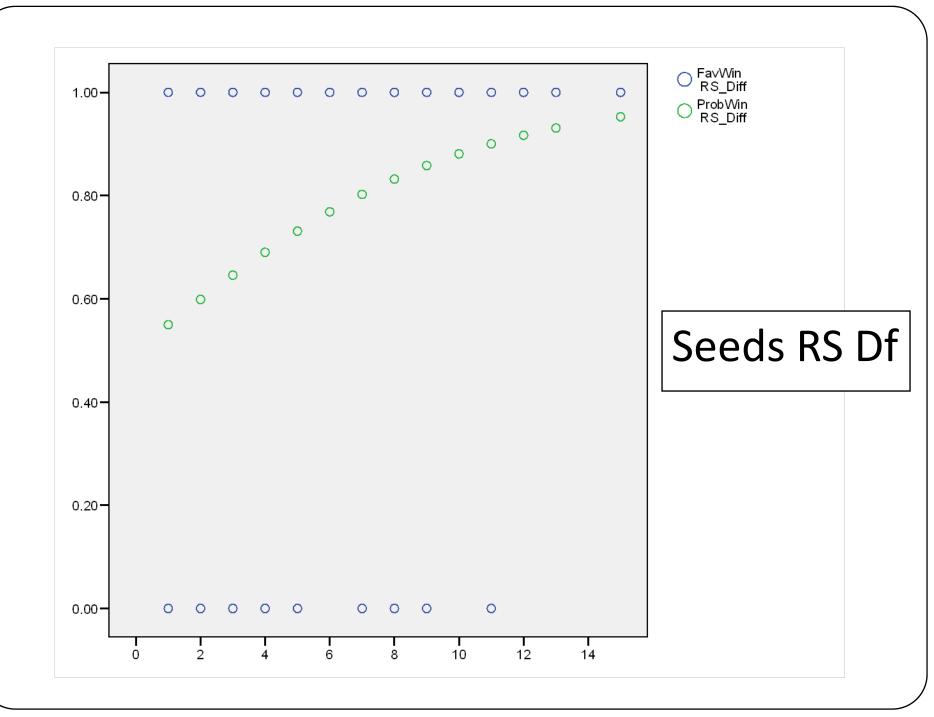
$$p(x) = \frac{e^{\beta_1 x}}{1 + e^{\beta_1 x}}$$

Logistic Curve



X





Example

Sagarin RS-Df
2004 Elite 8
Connecticut vs. Alabama
Connecticut's Rating = 90.74
Alabama's Rating = 84.46
Relative Strength of the Favored Team = 6.28

Look at our Graph

Connecticut had approximately an 80% chance of winning according to Sagarin's RS_Df.

2004 National Champions

	β_1	Sig. (P-Value)	Cox and Snell R^2	% of games fav. team won
Sagarin RS_Df	.206	.000	.312	72.2
Sagarin RS_Rt	.930	.000	.202	72.2
RPI RS_Df	24.068	.000	.271	70.9
RPI RS_Rt	.864	.000	.181	70.9
Pomeroy RS_Df	.219	.000	.297	73.0
Pomeroy RS_Rt	.953	.000	.217	73.0
Massey RS_Df	3.078	.000	.278	72.6
Massey RS_Rt	.867	.000	.231	72.6
Seed RS_Df	.200	.000	.301	73.2
Seed RS_Rt	.472	.000	.293	73.2

Top 3 • Sagarin_Df- $p(x) = \frac{e^{.206x}}{1 + e^{.206x}}$

• Seeds_Df-
$$p(x) = \frac{e^{.200x}}{1 + e^{.200x}}$$

• Pomeroy_Df-
$$p(x) = \frac{e^{.219x}}{1 + e^{.219x}}$$

What happens when the relative strength increases 1 unit?

- $\ln \frac{p}{1-p} = \beta_1 x$ where relative strength = x
- Then by raising both sides to the power of *e*, and we obtain: $\frac{p}{1-p} = e^{\beta_{1}x} \quad \text{where relative strength} = x$
- Thus when we adding one to the relative strength we obtain:

$$\frac{p^2}{1-p^2} = e^{\beta_1(x+1)}$$
$$\frac{p^2}{1-p^2} = e^{\beta_1x+\beta_1}$$
$$\frac{p^2}{1-p^2} = e^{\beta_1x} * e^{\beta_1}$$
$$\frac{p^2}{1-p^2} = e^{\beta_1x} * \frac{p^2}{1-p^2}$$

Conclusions

- All 5 rating systems were statistically significant.
- Not one rating systems more accurate than the others.
- Was the prediction about seeds correct?
- Ratio vs. Difference
- Top 3
- Sagarin RS_Df
- Pomeroy RS_Df
- Seeds RS_Df