Driven Oscillations (linear damping)

- Damped harmonic oscillator driven by time dependent external force:

\[m\ddot{x} + c\dot{x} + kx = F_{\text{ext}}(t) \]

 inhomogeneous!

- Look at simple, periodic driving force:

\[F_{\text{ext}}(t) = F_0 \cos(\omega t) = \text{Re}\{F_0 e^{i\omega t}\} \]

 it will be simpler to deal with complex numbers

- Solution to differential equation will be the sum of two parts:

\[x(t) = x_c(t) + x_p(t) \]

 complementary soln.
 (soln to homogeneous eqn)
 transient term
 (we know this already!)

 "particular integral"
 (soln to inhomogeneous bit)
 steady-state term
Driven Oscillations (linear damping)

\[x(t) = x_c(t) + x_p(t) = C_1 e^{-\gamma t} e^{i \omega_0 t} + C_2 e^{-\gamma t} e^{-i \omega_0 t} + A e^{i(\omega t - \delta)} \]

or

\[x(t) = x_c(t) + x_p(t) = A d e^{-\gamma t} \cos(\omega_d t - \phi) + A \cos(\omega t - \delta) \]

where

\[\delta = \tan^{-1}\left(\frac{2 \gamma \omega}{\omega_0^2 - \omega^2} \right) \]

\[A = \frac{F_0}{m} \sqrt{\left(\omega_0^2 - \omega^2 \right)^2 + 4 \gamma^2 \omega^2} \]

where

\[\omega^2 = \omega_0^2 - 2 \gamma^2 \]

resonance

\[\gamma = \frac{1}{2L} \int_{-L}^{L} f(x') dx' \]

\[a_n = \frac{1}{L} \int_{-L}^{L} f(x') \cos\left(\frac{n \pi x'}{L} \right) dx' \]

\[b_n = \frac{1}{L} \int_{-L}^{L} f(x') \sin\left(\frac{n \pi x'}{L} \right) dx' \]

Similarly, the function is instead defined on the interval \([0, L]\), the above equations simply become

\[a_0 = \frac{1}{L} \int_{0}^{L} f(x') dx' \]

\[a_n = \frac{1}{L} \int_{0}^{L} f(x') \cos\left(\frac{n \pi x'}{L} \right) dx' \]

\[b_n = \frac{1}{L} \int_{0}^{L} f(x') \sin\left(\frac{n \pi x'}{L} \right) dx' \]

Fourier Series

For a function defined on the interval \([-L, L]\), where

\[f(x') = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n \pi x'}{L} \right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n \pi x'}{L} \right) \]

where

\[a_0 = \frac{1}{L} \int_{-L}^{L} f(x') dx' \]

\[a_n = \frac{1}{L} \int_{-L}^{L} f(x') \cos\left(\frac{n \pi x'}{L} \right) dx' \]

\[b_n = \frac{1}{L} \int_{-L}^{L} f(x') \sin\left(\frac{n \pi x'}{L} \right) dx' \]
Hamilton’s Principle

• Of all the possible paths along which a dynamical system may move from one point to another within a specified time interval (consistent with any constraints), the actual path followed is that which minimizes the time integral of the difference between the kinetic and potential energies.

Published in two papers, 1834, 1835